Sevimli, M. F. (2005). Post-Treatment of Pulp and Paper Industry Wastewater by Advanced Oxidation Processes. Ozone: Science & Engineering, 27(1), 37-43. doi:10.1080/01919510590908968
Key Statistics Report 2017|CEPI-CONFEDERATION OF EUROPEAN PAPER INDUSTRIEShttp://www.cepi.org/keystatistics2017
Rajkumar, K. (2016). An Evaluation of Biological Approach for the Effluent Treatment of Paper Boards Industry - An Economic Perspective. Journal of Bioremediation & Biodegradation, 7(5). doi:10.4172/2155-6199.1000366
[+]
Sevimli, M. F. (2005). Post-Treatment of Pulp and Paper Industry Wastewater by Advanced Oxidation Processes. Ozone: Science & Engineering, 27(1), 37-43. doi:10.1080/01919510590908968
Key Statistics Report 2017|CEPI-CONFEDERATION OF EUROPEAN PAPER INDUSTRIEShttp://www.cepi.org/keystatistics2017
Rajkumar, K. (2016). An Evaluation of Biological Approach for the Effluent Treatment of Paper Boards Industry - An Economic Perspective. Journal of Bioremediation & Biodegradation, 7(5). doi:10.4172/2155-6199.1000366
AHMAD, A., WONG, S., TENG, T., & ZUHAIRI, A. (2008). Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater. Chemical Engineering Journal, 137(3), 510-517. doi:10.1016/j.cej.2007.03.088
Temmink, H., & Grolle, K. (2005). Tertiary activated carbon treatment of paper and board industry wastewater. Bioresource Technology, 96(15), 1683-1689. doi:10.1016/j.biortech.2004.12.035
Zhang, Q., & Chuang, K. T. (2001). Adsorption of organic pollutants from effluents of a Kraft pulp mill on activated carbon and polymer resin. Advances in Environmental Research, 5(3), 251-258. doi:10.1016/s1093-0191(00)00059-9
Catalkaya, E. C., & Kargi, F. (2008). Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals. Journal of Environmental Management, 87(3), 396-404. doi:10.1016/j.jenvman.2007.01.016
Pérez, M., Torrades, F., Garcı́a-Hortal, J. A., Domènech, X., & Peral, J. (2002). Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Applied Catalysis B: Environmental, 36(1), 63-74. doi:10.1016/s0926-3373(01)00281-8
Gönder, Z. B., Arayici, S., & Barlas, H. (2012). Treatment of Pulp and Paper Mill Wastewater Using Utrafiltration Process: Optimization of the Fouling and Rejections. Industrial & Engineering Chemistry Research, 51(17), 6184-6195. doi:10.1021/ie2024504
Liu, G., Liu, Y., Ni, J., Shi, H., & Qian, Y. (2004). Treatability of kraft spent liquor by microfiltration and andultrafiltration. Desalination, 160(2), 131-141. doi:10.1016/s0011-9164(04)90003-3
Nuortila-Jokinen, J., Mänttäri, M., Huuhilo, T., Kallioinen, M., & Nyström, M. (2004). Water circuit closure with membrane technology in the pulp and paper industry. Water Science and Technology, 50(3), 217-227. doi:10.2166/wst.2004.0199
Zaidi, A., Buisson, H., Sourirajan, S., & Wood, H. (1992). Ultra- and Nano-Filtration in Advanced Effluent Treatment Schemes for Pollution Control in the Pulp and Paper Industry. Water Science and Technology, 25(10), 263-276. doi:10.2166/wst.1992.0254
Toczyłowska-Mamińska, R. (2017). Limits and perspectives of pulp and paper industry wastewater treatment – A review. Renewable and Sustainable Energy Reviews, 78, 764-772. doi:10.1016/j.rser.2017.05.021
Kamali, M., & Khodaparast, Z. (2015). Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and Environmental Safety, 114, 326-342. doi:10.1016/j.ecoenv.2014.05.005
Beril Gönder, Z., Arayici, S., & Barlas, H. (2011). Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling. Separation and Purification Technology, 76(3), 292-302. doi:10.1016/j.seppur.2010.10.018
Shukla, S. K., Kumar, V., Van Doan, T., Yoo, K., Kim, Y., & Park, J. (2014). Combining activated sludge process with membrane separation to obtain recyclable quality water from paper mill effluent. Clean Technologies and Environmental Policy, 17(3), 781-788. doi:10.1007/s10098-014-0836-2
Chen, C., Mao, S., Wang, J., Bao, J., Xu, H., Su, W., & Dai, H. (2015). Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis. BioResources, 10(2). doi:10.15376/biores.10.2.2376-2391
Krawczyk, H., Oinonen, P., & Jönsson, A.-S. (2013). Combined membrane filtration and enzymatic treatment for recovery of high molecular mass hemicelluloses from chemithermomechanical pulp process water. Chemical Engineering Journal, 225, 292-299. doi:10.1016/j.cej.2013.03.089
Sousa, M. R. S., Lora-Garcia, J., & López-Pérez, M.-F. (2018). Modelling approach to an ultrafiltration process for the removal of dissolved and colloidal substances from treated wastewater for reuse in recycled paper manufacturing. Journal of Water Process Engineering, 21, 96-106. doi:10.1016/j.jwpe.2017.11.017
Karthik, M., Dhodapkar, R., Manekar, P., Aswale, P., & Nandy, T. (2011). Closing water loop in a paper mill section for water conservation and reuse. Desalination, 281, 172-178. doi:10.1016/j.desal.2011.07.055
Mänttäri, M., Nuortila-Jokinen, J., & Nyström, M. (1997). Evaluation of nanofiltration membranes for filtration of paper mill total effluent. Filtration & Separation, 34(3), 275-280. doi:10.1016/s0015-1882(97)84794-5
Cassano, A., Conidi, C., & Drioli, E. (2011). Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Research, 45(10), 3197-3204. doi:10.1016/j.watres.2011.03.041
Puro, L., Tanninen, J., & Nyström, M. (2002). Analyses of organic foulants in membranes fouled by pulp and paper mill effluent using solid-liquid extraction. Desalination, 143(1), 1-9. doi:10.1016/s0011-9164(02)00215-1
Puro, L., Kallioinen, M., Mänttäri, M., & Nyström, M. (2011). Evaluation of behavior and fouling potential of wood extractives in ultrafiltration of pulp and paper mill process water. Journal of Membrane Science, 368(1-2), 150-158. doi:10.1016/j.memsci.2010.11.032
Hesampour, M., Krzyzaniak, A., & Nyström, M. (2008). The influence of different factors on the stability and ultrafiltration of emulsified oil in water. Journal of Membrane Science, 325(1), 199-208. doi:10.1016/j.memsci.2008.07.048
Pourjafar, S., Jahanshahi, M., & Rahimpour, A. (2013). Optimization of TiO2 modified poly(vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method. Desalination, 315, 107-114. doi:10.1016/j.desal.2012.08.029
Reyhani, A., Sepehrinia, K., Seyed Shahabadi, S. M., Rekabdar, F., & Gheshlaghi, A. (2014). Optimization of operating conditions in ultrafiltration process for produced water treatment via Taguchi methodology. Desalination and Water Treatment, 54(10), 2669-2680. doi:10.1080/19443994.2014.904821
Rezvanpour, A., Roostaazad, R., Hesampour, M., Nyström, M., & Ghotbi, C. (2009). Effective factors in the treatment of kerosene–water emulsion by using UF membranes. Journal of Hazardous Materials, 161(2-3), 1216-1224. doi:10.1016/j.jhazmat.2008.04.074
Salahi, A., Abbasi, M., & Mohammadi, T. (2010). Permeate flux decline during UF of oily wastewater: Experimental and modeling. Desalination, 251(1-3), 153-160. doi:10.1016/j.desal.2009.08.006
Salahi, A., & Mohammadi, T. (2011). Oily wastewater treatment by ultrafiltration using Taguchi experimental design. Water Science and Technology, 63(7), 1476-1484. doi:10.2166/wst.2011.383
Ezzati, A., Gorouhi, E., & Mohammadi, T. (2005). Separation of water in oil emulsions using microfiltration. Desalination, 185(1-3), 371-382. doi:10.1016/j.desal.2005.03.086
Kaladhar, M., Subbaiah, K. V., Rao, C. S., … Rao, K. N. (2011). Application of Taguchi approach and Utility Concept in solving the Multi-objective Problem when turning AISI 202 Austenitic Stainless Steel. Journal of Engineering Science and Technology Review, 4(1), 55-61. doi:10.25103/jestr.041.08
Mohammadi, T., & Safavi, M. A. (2009). Application of Taguchi method in optimization of desalination by vacuum membrane distillation. Desalination, 249(1), 83-89. doi:10.1016/j.desal.2009.01.017
Khan, M. M. T., Takizawa, S., Lewandowski, Z., Jones, W. L., Camper, A. K., Katayama, H., … Ohgaki, S. (2011). Membrane fouling due to dynamic particle size changes in the aerated hybrid PAC–MF system. Journal of Membrane Science, 371(1-2), 99-107. doi:10.1016/j.memsci.2011.01.017
Rezaei, H., Ashtiani, F. Z., & Fouladitajar, A. (2014). Fouling behavior and performance of microfiltration membranes for whey treatment in steady and unsteady-state conditions. Brazilian Journal of Chemical Engineering, 31(2), 503-518. doi:10.1590/0104-6632.20140312s00002521
Cojocaru, C., & Zakrzewska-Trznadel, G. (2007). Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration. Journal of Membrane Science, 298(1-2), 56-70. doi:10.1016/j.memsci.2007.04.001
Idris, A. (2002). Optimization of cellulose acetate hollow fiber reverse osmosis membrane production using Taguchi method. Journal of Membrane Science, 205(1-2), 223-237. doi:10.1016/s0376-7388(02)00116-3
Kumar, Y., & Singh, H. (2014). Multi-response Optimization in Dry Turning Process Using Taguchi’s Approach and Utility Concept. Procedia Materials Science, 5, 2142-2151. doi:10.1016/j.mspro.2014.07.417
Song, L. (1998). Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. Journal of Membrane Science, 139(2), 183-200. doi:10.1016/s0376-7388(97)00263-9
Xu, J., Chang, C.-Y., & Gao, C. (2010). Performance of a ceramic ultrafiltration membrane system in pretreatment to seawater desalination. Separation and Purification Technology, 75(2), 165-173. doi:10.1016/j.seppur.2010.07.020
Seyed Shahabadi, S. M., & Reyhani, A. (2014). Optimization of operating conditions in ultrafiltration process for produced water treatment via the full factorial design methodology. Separation and Purification Technology, 132, 50-61. doi:10.1016/j.seppur.2014.04.051
Ennil Köse, T. (2008). Agricultural residue anion exchanger for removal of dyestuff from wastewater using full factorial design. Desalination, 222(1-3), 323-330. doi:10.1016/j.desal.2007.01.156
Gönder, Z. B., Kaya, Y., Vergili, I., & Barlas, H. (2010). Optimization of filtration conditions for CIP wastewater treatment by nanofiltration process using Taguchi approach. Separation and Purification Technology, 70(3), 265-273. doi:10.1016/j.seppur.2009.10.001
Reyhani, A., & Hemmati, M. (2013). Wastewater treatment by ultrafiltration system, considering the effects of operating conditions: experimental and modeling. Desalination and Water Treatment, 52(34-36), 6282-6294. doi:10.1080/19443994.2013.815587
[-]