- -

Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change

Show full item record

González-Orenga, S.; Trif, C.; Donat-Torres, MP.; Llinares Palacios, JV.; Collado, F.; Ferrer-Gallego, PP.; Laguna, E.... (2020). Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change. Plants. 9(10):1-24. https://doi.org/10.3390/plants9101251

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166898

Files in this item

Item Metadata

Title: Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change
Author: González-Orenga, Sara Trif, Calin Donat-Torres, Maria P. Llinares Palacios, Josep Vicent Collado, Francisco Ferrer-Gallego, P. Pablo Laguna, Emilio Boscaiu, Monica Vicente, Oscar
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Thalictrum maritimum is an endangered, endemic species in East Spain, growing in areas of relatively low salinity in littoral salt marshes. A regression of its populations and the number of individuals has been ...[+]
Subjects: Endangered species , Water deficit , Salt stress , Halophytes , Climate analysis , Soil analysis , Plant growth analysis , Biochemical parameters , Biodiversity , Conservation programmes
Copyrigths: Reconocimiento (by)
Source:
Plants. (eissn: 2223-7747 )
DOI: 10.3390/plants9101251
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/plants9101251
Project ID:
GENERALITAT VALENCIANA/AICO/2017/039
Thanks:
This research was funded by GENERALITAT VALENCIANA, grant number AICO/2017/039, to M. Boscaiu.
Type: Artículo

References

Laguna Lumbreras, E., & Ferrer Gallego, P. P. (2015). Global environmental change in the unique flora: Endangered plant communities in the Valencia region. Mètode Revista de difusió de la investigació, 0(6). doi:10.7203/metode.6.4127

Gómez Mercado, F., de Haro Lozano, S., & López-Carrique, E. (2017). Impacts of future climate scenarios on hypersaline habitats and their conservation interest. Biodiversity and Conservation, 26(11), 2717-2734. doi:10.1007/s10531-017-1382-0

Dufour, M. L. (1860). Diagnoses Et Observations Critiques Sur Quelques Plantes D’Espagne Mal Connues Ou Nouvelles. Bulletin de la Société Botanique de France, 7(4), 221-227. doi:10.1080/00378941.1860.10826242 [+]
Laguna Lumbreras, E., & Ferrer Gallego, P. P. (2015). Global environmental change in the unique flora: Endangered plant communities in the Valencia region. Mètode Revista de difusió de la investigació, 0(6). doi:10.7203/metode.6.4127

Gómez Mercado, F., de Haro Lozano, S., & López-Carrique, E. (2017). Impacts of future climate scenarios on hypersaline habitats and their conservation interest. Biodiversity and Conservation, 26(11), 2717-2734. doi:10.1007/s10531-017-1382-0

Dufour, M. L. (1860). Diagnoses Et Observations Critiques Sur Quelques Plantes D’Espagne Mal Connues Ou Nouvelles. Bulletin de la Société Botanique de France, 7(4), 221-227. doi:10.1080/00378941.1860.10826242

FORTE GIL, J. A., YABOR, L., BELLIDO NADAL, A., COLLADO, F., FERRER-GALLEGO, P., VICENTE, O., & BOSCAIU, M. (2017). A Methodological Approach for Testing the Viability of Seeds Stored in Short-Term Seed Banks. Notulae Scientia Biologicae, 9(4), 563-570. doi:10.15835/nsb9410173

Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge, Generalitat Valenciana, Valencia http://bdb.gva.es/

Lionello, P., & Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change, 18(5), 1481-1493. doi:10.1007/s10113-018-1290-1

Worldwide Bioclimatic Classification System, 1996−2020, S. Rivas-Martinez & S. Rivas-Saenz, Phytosociological Research Center, Spain http://www.globalbioclimatics.org

The Agroclimatic Information System for Irrigation (SIAR, Sistema de Información Agroclimática para Regadío), Benifaió, Llíria and Moncada Agro-Meteorological Stations http://eportal.miteco.gob.es/websiar/Inicio.aspx

Al Hassan, M., Chaura, J., López-Gresa, M. P., Borsai, O., Daniso, E., Donat-Torres, M. P., … Boscaiu, M. (2016). Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00473

Kozminska, A., Al Hassan, M., Hanus-Fajerska, E., Naranjo, M. A., Boscaiu, M., & Vicente, O. (2018). Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany, 117, 193-206. doi:10.1016/j.sajb.2018.05.022

González-Orenga, S., Llinares, J. V., Al Hassan, M., Fita, A., Collado, F., Lisón, P., … Boscaiu, M. (2020). Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses. Plant and Soil, 449(1-2), 267-284. doi:10.1007/s11104-020-04486-4

Zheng, Q., Liu, L., Liu, Z., Chen, J., & Zhao, G. (2009). Comparison of the response of ion distribution in the tissues and cells of the succulent plants Aloe vera and Salicornia europaea to saline stress. Journal of Plant Nutrition and Soil Science, 172(6), 875-883. doi:10.1002/jpln.200900122

González-Orenga, S., Ferrer-Gallego, P. P., Laguna, E., López-Gresa, M. P., Donat-Torres, M. P., Verdeguer, M., … Boscaiu, M. (2019). Insights on Salt Tolerance of Two Endemic Limonium Species from Spain. Metabolites, 9(12), 294. doi:10.3390/metabo9120294

Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x

Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 28(1), 89-121. doi:10.1146/annurev.pp.28.060177.000513

Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053

Wu, H., Zhang, X., Giraldo, J. P., & Shabala, S. (2018). It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil, 431(1-2), 1-17. doi:10.1007/s11104-018-3770-y

Brenes, M., Solana, A., Boscaiu, M., Fita, A., Vicente, O., Calatayud, Á., … Plazas, M. (2020). Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy, 10(5), 651. doi:10.3390/agronomy10050651

RENGEL, Z. (1992). The role of calcium in salt toxicity. Plant, Cell and Environment, 15(6), 625-632. doi:10.1111/j.1365-3040.1992.tb01004.x

Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1998). Plants use calcium to resolve salt stress. Trends in Plant Science, 3(11), 411-412. doi:10.1016/s1360-1385(98)01331-4

Hepler, P. K. (2005). Calcium: A Central Regulator of Plant Growth and Development. The Plant Cell, 17(8), 2142-2155. doi:10.1105/tpc.105.032508

Mahajan, S., Pandey, G. K., & Tuteja, N. (2008). Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway. Archives of Biochemistry and Biophysics, 471(2), 146-158. doi:10.1016/j.abb.2008.01.010

González-Orenga, S., Al Hassan, M., Llinares, J. V., Lisón, P., López-Gresa, M. P., Verdeguer, M., … Boscaiu, M. (2019). Qualitative and Quantitative Differences in Osmolytes Accumulation and Antioxidant Activities in Response to Water Deficit in Four Mediterranean Limonium Species. Plants, 8(11), 506. doi:10.3390/plants8110506

Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0

Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006

CHEN, T. H. H., & MURATA, N. (2010). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell & Environment, 34(1), 1-20. doi:10.1111/j.1365-3040.2010.02232.x

Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009

Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701

Foyer, C. H., & Noctor, G. (2005). Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. The Plant Cell, 17(7), 1866-1875. doi:10.1105/tpc.105.033589

Asada, K. (2006). Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiology, 141(2), 391-396. doi:10.1104/pp.106.082040

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016

Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241-1257. doi:10.1093/jxb/ert430

Shabala, S. (2009). Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. Journal of Experimental Botany, 60(3), 709-712. doi:10.1093/jxb/erp013

Demidchik, V., Shabala, S. N., & Davies, J. M. (2007). Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal, 49(3), 377-386. doi:10.1111/j.1365-313x.2006.02971.x

Yu, J., Chen, S., Zhao, Q., Wang, T., Yang, C., Diaz, C., … Dai, S. (2011). Physiological and Proteomic Analysis of Salinity Tolerance in Puccinellia tenuiflora. Journal of Proteome Research, 10(9), 3852-3870. doi:10.1021/pr101102p

Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00537

Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389

Alscher, R. G. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331-1341. doi:10.1093/jexbot/53.372.1331

Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H. J., … Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 31(3), 427-436. doi:10.1007/s11738-009-0275-6

Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003

Arbona, V., Flors, V., Jacas, J., García-Agustín, P., & Gómez-Cadenas, A. (2003). Enzymatic and Non-enzymatic Antioxidant Responses of Carrizo citrange, a Salt-Sensitive Citrus Rootstock, to Different Levels of Salinity. Plant and Cell Physiology, 44(4), 388-394. doi:10.1093/pcp/pcg059

Al Hassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx009

Bautista, I., Boscaiu, M., Lidón, A., Llinares, J. V., Lull, C., Donat, M. P., … Vicente, O. (2015). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum, 38(1). doi:10.1007/s11738-015-2025-2

Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049

Euro+Med (2006+): Euro+Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity http://ww2.bgbm.org/EuroPlusMed/

Bouyoucos, G. J. (1962). Hydrometer Method Improved for Making Particle Size Analyses of Soils 1. Agronomy Journal, 54(5), 464-465. doi:10.2134/agronj1962.00021962005400050028x

WALKLEY, A., & BLACK, I. A. (1934). AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science, 37(1), 29-38. doi:10.1097/00010694-193401000-00003

LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591

Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017

Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524

Taulavuori, E., Hellström, E., Taulavuori, K., & Laine, K. (2001). Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. Journal of Experimental Botany, 52(365), 2375-2380. doi:10.1093/jexbot/52.365.2375

Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3

Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1

Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3

Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record