- -

Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Orenga, Sara es_ES
dc.contributor.author Trif, Calin es_ES
dc.contributor.author Donat-Torres, Maria P. es_ES
dc.contributor.author Llinares Palacios, Josep Vicent es_ES
dc.contributor.author Collado, Francisco es_ES
dc.contributor.author Ferrer-Gallego, P. Pablo es_ES
dc.contributor.author Laguna, Emilio es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.date.accessioned 2021-05-28T03:32:34Z
dc.date.available 2021-05-28T03:32:34Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166898
dc.description.abstract [EN] Thalictrum maritimum is an endangered, endemic species in East Spain, growing in areas of relatively low salinity in littoral salt marshes. A regression of its populations and the number of individuals has been registered in the last decade. This study aimed at establishing the causes of this reduction using a multidisciplinary approach, including climatic, ecological, physiological and biochemical analyses. The climatic data indicated that there was a direct negative correlation between increased drought, especially during autumn, and the number of individuals censused in the area of study. The susceptibility of this species to water deficit was confirmed by the analysis of growth parameters upon a water deficit treatment applied under controlled greenhouse conditions, with the plants withstanding only 23 days of complete absence of irrigation. On the other hand, increased salinity does not seem to be a risk factor for this species, which behaves as a halophyte, tolerating in controlled treatments salinities much higher than those registered in its natural habitat. The most relevant mechanisms of salt tolerance in T. maritimum appear to be based on the control of ion transport, by (i) the active transport of toxic ions to the aerial parts of the plants at high external salinity¿where they are presumably stored in the leaf vacuoles to avoid their deleterious effects in the cytosol, (ii) the maintenance of K+ concentrations in belowground and aboveground organs, despite the increase of Na+ levels, and (iii) the salt-induced accumulation of Ca2+, particularly in stems and leaves. This study provides useful information for the management of the conservation plans of this rare and endangered species. es_ES
dc.description.sponsorship This research was funded by GENERALITAT VALENCIANA, grant number AICO/2017/039, to M. Boscaiu. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Plants es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Endangered species es_ES
dc.subject Water deficit es_ES
dc.subject Salt stress es_ES
dc.subject Halophytes es_ES
dc.subject Climate analysis es_ES
dc.subject Soil analysis es_ES
dc.subject Plant growth analysis es_ES
dc.subject Biochemical parameters es_ES
dc.subject Biodiversity es_ES
dc.subject Conservation programmes es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.title Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/plants9101251 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F039/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation González-Orenga, S.; Trif, C.; Donat-Torres, MP.; Llinares Palacios, JV.; Collado, F.; Ferrer-Gallego, PP.; Laguna, E.... (2020). Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change. Plants. 9(10):1-24. https://doi.org/10.3390/plants9101251 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/plants9101251 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2223-7747 es_ES
dc.identifier.pmid 32977553 es_ES
dc.identifier.pmcid PMC7598256 es_ES
dc.relation.pasarela S\418536 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Laguna Lumbreras, E., & Ferrer Gallego, P. P. (2015). Global environmental change in the unique flora: Endangered plant communities in the Valencia region. Mètode Revista de difusió de la investigació, 0(6). doi:10.7203/metode.6.4127 es_ES
dc.description.references Gómez Mercado, F., de Haro Lozano, S., & López-Carrique, E. (2017). Impacts of future climate scenarios on hypersaline habitats and their conservation interest. Biodiversity and Conservation, 26(11), 2717-2734. doi:10.1007/s10531-017-1382-0 es_ES
dc.description.references Dufour, M. L. (1860). Diagnoses Et Observations Critiques Sur Quelques Plantes D’Espagne Mal Connues Ou Nouvelles. Bulletin de la Société Botanique de France, 7(4), 221-227. doi:10.1080/00378941.1860.10826242 es_ES
dc.description.references FORTE GIL, J. A., YABOR, L., BELLIDO NADAL, A., COLLADO, F., FERRER-GALLEGO, P., VICENTE, O., & BOSCAIU, M. (2017). A Methodological Approach for Testing the Viability of Seeds Stored in Short-Term Seed Banks. Notulae Scientia Biologicae, 9(4), 563-570. doi:10.15835/nsb9410173 es_ES
dc.description.references Conselleria de Medi Ambient, Aigua, Urbanisme i Habitatge, Generalitat Valenciana, Valencia http://bdb.gva.es/ es_ES
dc.description.references Lionello, P., & Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change, 18(5), 1481-1493. doi:10.1007/s10113-018-1290-1 es_ES
dc.description.references Worldwide Bioclimatic Classification System, 1996−2020, S. Rivas-Martinez & S. Rivas-Saenz, Phytosociological Research Center, Spain http://www.globalbioclimatics.org es_ES
dc.description.references The Agroclimatic Information System for Irrigation (SIAR, Sistema de Información Agroclimática para Regadío), Benifaió, Llíria and Moncada Agro-Meteorological Stations http://eportal.miteco.gob.es/websiar/Inicio.aspx es_ES
dc.description.references Al Hassan, M., Chaura, J., López-Gresa, M. P., Borsai, O., Daniso, E., Donat-Torres, M. P., … Boscaiu, M. (2016). Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00473 es_ES
dc.description.references Kozminska, A., Al Hassan, M., Hanus-Fajerska, E., Naranjo, M. A., Boscaiu, M., & Vicente, O. (2018). Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany, 117, 193-206. doi:10.1016/j.sajb.2018.05.022 es_ES
dc.description.references González-Orenga, S., Llinares, J. V., Al Hassan, M., Fita, A., Collado, F., Lisón, P., … Boscaiu, M. (2020). Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses. Plant and Soil, 449(1-2), 267-284. doi:10.1007/s11104-020-04486-4 es_ES
dc.description.references Zheng, Q., Liu, L., Liu, Z., Chen, J., & Zhao, G. (2009). Comparison of the response of ion distribution in the tissues and cells of the succulent plants Aloe vera and Salicornia europaea to saline stress. Journal of Plant Nutrition and Soil Science, 172(6), 875-883. doi:10.1002/jpln.200900122 es_ES
dc.description.references González-Orenga, S., Ferrer-Gallego, P. P., Laguna, E., López-Gresa, M. P., Donat-Torres, M. P., Verdeguer, M., … Boscaiu, M. (2019). Insights on Salt Tolerance of Two Endemic Limonium Species from Spain. Metabolites, 9(12), 294. doi:10.3390/metabo9120294 es_ES
dc.description.references Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x es_ES
dc.description.references Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 28(1), 89-121. doi:10.1146/annurev.pp.28.060177.000513 es_ES
dc.description.references Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053 es_ES
dc.description.references Wu, H., Zhang, X., Giraldo, J. P., & Shabala, S. (2018). It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil, 431(1-2), 1-17. doi:10.1007/s11104-018-3770-y es_ES
dc.description.references Brenes, M., Solana, A., Boscaiu, M., Fita, A., Vicente, O., Calatayud, Á., … Plazas, M. (2020). Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy, 10(5), 651. doi:10.3390/agronomy10050651 es_ES
dc.description.references RENGEL, Z. (1992). The role of calcium in salt toxicity. Plant, Cell and Environment, 15(6), 625-632. doi:10.1111/j.1365-3040.1992.tb01004.x es_ES
dc.description.references Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1998). Plants use calcium to resolve salt stress. Trends in Plant Science, 3(11), 411-412. doi:10.1016/s1360-1385(98)01331-4 es_ES
dc.description.references Hepler, P. K. (2005). Calcium: A Central Regulator of Plant Growth and Development. The Plant Cell, 17(8), 2142-2155. doi:10.1105/tpc.105.032508 es_ES
dc.description.references Mahajan, S., Pandey, G. K., & Tuteja, N. (2008). Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway. Archives of Biochemistry and Biophysics, 471(2), 146-158. doi:10.1016/j.abb.2008.01.010 es_ES
dc.description.references González-Orenga, S., Al Hassan, M., Llinares, J. V., Lisón, P., López-Gresa, M. P., Verdeguer, M., … Boscaiu, M. (2019). Qualitative and Quantitative Differences in Osmolytes Accumulation and Antioxidant Activities in Response to Water Deficit in Four Mediterranean Limonium Species. Plants, 8(11), 506. doi:10.3390/plants8110506 es_ES
dc.description.references Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 es_ES
dc.description.references Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006 es_ES
dc.description.references CHEN, T. H. H., & MURATA, N. (2010). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell & Environment, 34(1), 1-20. doi:10.1111/j.1365-3040.2010.02232.x es_ES
dc.description.references Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 es_ES
dc.description.references Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 es_ES
dc.description.references Foyer, C. H., & Noctor, G. (2005). Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses. The Plant Cell, 17(7), 1866-1875. doi:10.1105/tpc.105.033589 es_ES
dc.description.references Asada, K. (2006). Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiology, 141(2), 391-396. doi:10.1104/pp.106.082040 es_ES
dc.description.references Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016 es_ES
dc.description.references Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2013). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241-1257. doi:10.1093/jxb/ert430 es_ES
dc.description.references Shabala, S. (2009). Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. Journal of Experimental Botany, 60(3), 709-712. doi:10.1093/jxb/erp013 es_ES
dc.description.references Demidchik, V., Shabala, S. N., & Davies, J. M. (2007). Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. The Plant Journal, 49(3), 377-386. doi:10.1111/j.1365-313x.2006.02971.x es_ES
dc.description.references Yu, J., Chen, S., Zhao, Q., Wang, T., Yang, C., Diaz, C., … Dai, S. (2011). Physiological and Proteomic Analysis of Salinity Tolerance in Puccinellia tenuiflora. Journal of Proteome Research, 10(9), 3852-3870. doi:10.1021/pr101102p es_ES
dc.description.references Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00537 es_ES
dc.description.references Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389 es_ES
dc.description.references Alscher, R. G. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331-1341. doi:10.1093/jexbot/53.372.1331 es_ES
dc.description.references Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H. J., … Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 31(3), 427-436. doi:10.1007/s11738-009-0275-6 es_ES
dc.description.references Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 es_ES
dc.description.references Arbona, V., Flors, V., Jacas, J., García-Agustín, P., & Gómez-Cadenas, A. (2003). Enzymatic and Non-enzymatic Antioxidant Responses of Carrizo citrange, a Salt-Sensitive Citrus Rootstock, to Different Levels of Salinity. Plant and Cell Physiology, 44(4), 388-394. doi:10.1093/pcp/pcg059 es_ES
dc.description.references Al Hassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx009 es_ES
dc.description.references Bautista, I., Boscaiu, M., Lidón, A., Llinares, J. V., Lull, C., Donat, M. P., … Vicente, O. (2015). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum, 38(1). doi:10.1007/s11738-015-2025-2 es_ES
dc.description.references Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 es_ES
dc.description.references Euro+Med (2006+): Euro+Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity http://ww2.bgbm.org/EuroPlusMed/ es_ES
dc.description.references Bouyoucos, G. J. (1962). Hydrometer Method Improved for Making Particle Size Analyses of Soils 1. Agronomy Journal, 54(5), 464-465. doi:10.2134/agronj1962.00021962005400050028x es_ES
dc.description.references WALKLEY, A., & BLACK, I. A. (1934). AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science, 37(1), 29-38. doi:10.1097/00010694-193401000-00003 es_ES
dc.description.references LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 es_ES
dc.description.references Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x es_ES
dc.description.references Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 es_ES
dc.description.references Taulavuori, E., Hellström, E., Taulavuori, K., & Laine, K. (2001). Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. Journal of Experimental Botany, 52(365), 2375-2380. doi:10.1093/jexbot/52.365.2375 es_ES
dc.description.references Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 es_ES
dc.description.references Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 es_ES
dc.description.references Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 es_ES
dc.description.references Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1 es_ES
dc.description.references Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3 es_ES
dc.description.references Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem