Mostrar el registro sencillo del ítem
dc.contributor.author | Martinez-Perez, Paula | es_ES |
dc.contributor.author | Gómez-Gómez, María Isabel | es_ES |
dc.contributor.author | Ivanova-Angelova, Todora | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Hurtado Montañés, Juan | es_ES |
dc.contributor.author | Bellieres, Laurent Christophe | es_ES |
dc.contributor.author | García-Rupérez, Jaime | es_ES |
dc.date.accessioned | 2021-05-28T03:34:04Z | |
dc.date.available | 2021-05-28T03:34:04Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.issn | 2072-666X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166911 | |
dc.description.abstract | [EN] Thrombin generation is a complex and finely regulated pathway that provokes dynamical changes of thrombin concentration in blood when a vascular injury occurs. In order to characterize the initiation phase of such process, when thrombin concentration is in the nM range, a label-free optical aptasensor is proposed here. This aptasensor combines a 1D photonic crystal structure consisting of a silicon corrugated waveguide with thrombin binding aptamers on its surface as bioreceptors. As a result, this aptasensor has been demonstrated to specifically detect thrombin concentrations ranging from 270 pM to 27 nM with an estimated detection limit of 33.5 pM and a response time of ~2 min. Furthermore, it has also been demonstrated that this aptasensor is able to continuously respond to consecutive increasing concentrations of thrombin and to detect binding events as they occur. All these features make this aptasensor a good candidate to continuously study how thrombin concentration progressively increases during the initiation phase of the coagulation cascade. | es_ES |
dc.description.sponsorship | This research was supported by a co-financed action by the European Union through the operational program of the European Regional Development Fund (FEDER) of the Valencian Community 2014-2020, the Generalitat Valenciana through the PROMETEO project AVANTI/2019/123 and by Universitat Politecnica de Valencia through grants PAID-01-17 and the project OCUSENSOR. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Micromachines | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Photonic crystal | es_ES |
dc.subject | Photonic bandgap | es_ES |
dc.subject | Optical biosensor | es_ES |
dc.subject | Aptasensor | es_ES |
dc.subject | Label-free | es_ES |
dc.subject | Thrombin | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/mi11050464 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-17/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F123/ES/NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Martinez-Perez, P.; Gómez-Gómez, MI.; Ivanova-Angelova, T.; Griol Barres, A.; Hurtado Montañés, J.; Bellieres, LC.; García-Rupérez, J. (2020). Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor. Micromachines. 11(5):1-12. https://doi.org/10.3390/mi11050464 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/mi11050464 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.pmid | 32354154 | es_ES |
dc.identifier.pmcid | PMC7281654 | es_ES |
dc.relation.pasarela | S\413125 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | CRAWLEY, J. T. B., ZANARDELLI, S., CHION, C. K. N. K., & LANE, D. A. (2007). The central role of thrombin in hemostasis. Journal of Thrombosis and Haemostasis, 5, 95-101. doi:10.1111/j.1538-7836.2007.02500.x | es_ES |
dc.description.references | Mann, K. G., Brummel, K., & Butenas, S. (2003). What is all that thrombin for? Journal of Thrombosis and Haemostasis, 1(7), 1504-1514. doi:10.1046/j.1538-7836.2003.00298.x | es_ES |
dc.description.references | Wolberg, A. S., & Campbell, R. A. (2008). Thrombin generation, fibrin clot formation and hemostasis. Transfusion and Apheresis Science, 38(1), 15-23. doi:10.1016/j.transci.2007.12.005 | es_ES |
dc.description.references | Brummel, K. E., Paradis, S. G., Butenas, S., & Mann, K. G. (2002). Thrombin functions during tissue factor–induced blood coagulation. Blood, 100(1), 148-152. doi:10.1182/blood.v100.1.148 | es_ES |
dc.description.references | Hockin, M. F., Jones, K. C., Everse, S. J., & Mann, K. G. (2002). A Model for the Stoichiometric Regulation of Blood Coagulation. Journal of Biological Chemistry, 277(21), 18322-18333. doi:10.1074/jbc.m201173200 | es_ES |
dc.description.references | Danforth, C. M., Orfeo, T., Everse, S. J., Mann, K. G., & Brummel-Ziedins, K. E. (2012). Defining the Boundaries of Normal Thrombin Generation: Investigations into Hemostasis. PLoS ONE, 7(2), e30385. doi:10.1371/journal.pone.0030385 | es_ES |
dc.description.references | Ten Cate, H., & Hemker, H. C. (2016). Thrombin Generation and Atherothrombosis: What Does the Evidence Indicate? Journal of the American Heart Association, 5(8). doi:10.1161/jaha.116.003553 | es_ES |
dc.description.references | Tripathy, D., Sanchez, A., Yin, X., Luo, J., Martinez, J., & Grammas, P. (2013). Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia. Frontiers in Aging Neuroscience, 5. doi:10.3389/fnagi.2013.00019 | es_ES |
dc.description.references | Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2016). Thrombin—unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer and Metastasis Reviews, 35(2), 213-233. doi:10.1007/s10555-016-9626-0 | es_ES |
dc.description.references | Remiker, A. S., & Palumbo, J. S. (2018). Mechanisms coupling thrombin to metastasis and tumorigenesis. Thrombosis Research, 164, S29-S33. doi:10.1016/j.thromres.2017.12.020 | es_ES |
dc.description.references | Duarte, R. C. F., Ferreira, C. N., Rios, D. R. A., Reis, H. J. dos, & Carvalho, M. das G. (2017). Thrombin generation assays for global evaluation of the hemostatic system: perspectives and limitations. Revista Brasileira de Hematologia e Hemoterapia, 39(3), 259-265. doi:10.1016/j.bjhh.2017.03.009 | es_ES |
dc.description.references | Kintigh, J., Monagle, P., & Ignjatovic, V. (2017). A review of commercially available thrombin generation assays. Research and Practice in Thrombosis and Haemostasis, 2(1), 42-48. doi:10.1002/rth2.12048 | es_ES |
dc.description.references | Mohammadi Aria, M., Erten, A., & Yalcin, O. (2019). Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00395 | es_ES |
dc.description.references | Deng, B., Lin, Y., Wang, C., Li, F., Wang, Z., Zhang, H., … Le, X. C. (2014). Aptamer binding assays for proteins: The thrombin example—A review. Analytica Chimica Acta, 837, 1-15. doi:10.1016/j.aca.2014.04.055 | es_ES |
dc.description.references | Adachi, & Nakamura. (2019). Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules, 24(23), 4229. doi:10.3390/molecules24234229 | es_ES |
dc.description.references | Zhang, Y., Lai, B., & Juhas, M. (2019). Recent Advances in Aptamer Discovery and Applications. Molecules, 24(5), 941. doi:10.3390/molecules24050941 | es_ES |
dc.description.references | Hong, P., Li, W., & Li, J. (2012). Applications of Aptasensors in Clinical Diagnostics. Sensors, 12(2), 1181-1193. doi:10.3390/s120201181 | es_ES |
dc.description.references | Nguyen, P.-L., Sekhon, S. S., Ahn, J.-Y., Ko, J. H., Lee, L., Cho, S.-J., … Kim, Y.-H. (2017). Aptasensor for environmental monitoring. Toxicology and Environmental Health Sciences, 9(2), 89-101. doi:10.1007/s13530-017-0308-2 | es_ES |
dc.description.references | Pohanka, M. (2019). Current Trends in the Biosensors for Biological Warfare Agents Assay. Materials, 12(14), 2303. doi:10.3390/ma12142303 | es_ES |
dc.description.references | Karimi, F., & Dabbagh, S. (2019). Gel green fluorescence ssDNA aptasensor based on carbon nanotubes for detection of anthrax protective antigen. International Journal of Biological Macromolecules, 140, 842-850. doi:10.1016/j.ijbiomac.2019.08.219 | es_ES |
dc.description.references | Damborský, P., Švitel, J., & Katrlík, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91-100. doi:10.1042/ebc20150010 | es_ES |
dc.description.references | Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146 | es_ES |
dc.description.references | Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 9(4), 1717. doi:10.1364/boe.9.001717 | es_ES |
dc.description.references | Russo Krauss, I., Merlino, A., Giancola, C., Randazzo, A., Mazzarella, L., & Sica, F. (2011). Thrombin–aptamer recognition: a revealed ambiguity. Nucleic Acids Research, 39(17), 7858-7867. doi:10.1093/nar/gkr522 | es_ES |
dc.description.references | Ponce, A. T., & Hong, K. L. (2019). A Mini-Review: Clinical Development and Potential of Aptamers for Thrombotic Events Treatment and Monitoring. Biomedicines, 7(3), 55. doi:10.3390/biomedicines7030055 | es_ES |
dc.description.references | Chen, X., Li, T., Tu, X., & Luo, L. (2018). Label-free fluorescent aptasensor for thrombin detection based on exonuclease I assisted target recycling and SYBR Green I aided signal amplification. Sensors and Actuators B: Chemical, 265, 98-103. doi:10.1016/j.snb.2018.02.099 | es_ES |
dc.description.references | Cho, H., Baker, B. R., Wachsmann-Hogiu, S., Pagba, C. V., Laurence, T. A., Lane, S. M., … Tok, J. B.-H. (2008). Aptamer-Based SERRS Sensor for Thrombin Detection. Nano Letters, 8(12), 4386-4390. doi:10.1021/nl802245w | es_ES |
dc.description.references | Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics, 11(10), e201800030. doi:10.1002/jbio.201800030 | es_ES |
dc.description.references | Oliverio, M., Perotto, S., Messina, G. C., Lovato, L., & De Angelis, F. (2017). Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. ACS Applied Materials & Interfaces, 9(35), 29394-29411. doi:10.1021/acsami.7b01583 | es_ES |
dc.description.references | Schuck, P., & Zhao, H. (2010). The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing. Surface Plasmon Resonance, 15-54. doi:10.1007/978-1-60761-670-2_2 | es_ES |
dc.description.references | Manfrinato, V. R., Zhang, L., Su, D., Duan, H., Hobbs, R. G., Stach, E. A., & Berggren, K. K. (2013). Resolution Limits of Electron-Beam Lithography toward the Atomic Scale. Nano Letters, 13(4), 1555-1558. doi:10.1021/nl304715p | es_ES |
dc.description.references | Petrova, I., Konopsky, V., Nabiev, I., & Sukhanova, A. (2019). Label-Free Flow Multiplex Biosensing via Photonic Crystal Surface Mode Detection. Scientific Reports, 9(1). doi:10.1038/s41598-019-45166-3 | es_ES |
dc.description.references | Düzgün, A., Maroto, A., Mairal, T., O’Sullivan, C., & Rius, F. X. (2010). Solid-contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins. The Analyst, 135(5), 1037. doi:10.1039/b926958d | es_ES |
dc.description.references | Bekmurzayeva, A., Dukenbayev, K., Shaimerdenova, M., Bekniyazov, I., Ayupova, T., Sypabekova, M., … Tosi, D. (2018). Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin. Sensors, 18(12), 4298. doi:10.3390/s18124298 | es_ES |
dc.description.references | Coelho, L., Marques Martins de Almeida, J. M., Santos, J. L., da Silva Jorge, P. A., Martins, M. C. L., Viegas, D., & Queirós, R. B. (2016). Aptamer-based fiber sensor for thrombin detection. Journal of Biomedical Optics, 21(8), 087005. doi:10.1117/1.jbo.21.8.087005 | es_ES |