- -

Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martinez-Perez, Paula es_ES
dc.contributor.author Gómez-Gómez, María Isabel es_ES
dc.contributor.author Ivanova-Angelova, Todora es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Hurtado Montañés, Juan es_ES
dc.contributor.author Bellieres, Laurent Christophe es_ES
dc.contributor.author García-Rupérez, Jaime es_ES
dc.date.accessioned 2021-05-28T03:34:04Z
dc.date.available 2021-05-28T03:34:04Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 2072-666X es_ES
dc.identifier.uri http://hdl.handle.net/10251/166911
dc.description.abstract [EN] Thrombin generation is a complex and finely regulated pathway that provokes dynamical changes of thrombin concentration in blood when a vascular injury occurs. In order to characterize the initiation phase of such process, when thrombin concentration is in the nM range, a label-free optical aptasensor is proposed here. This aptasensor combines a 1D photonic crystal structure consisting of a silicon corrugated waveguide with thrombin binding aptamers on its surface as bioreceptors. As a result, this aptasensor has been demonstrated to specifically detect thrombin concentrations ranging from 270 pM to 27 nM with an estimated detection limit of 33.5 pM and a response time of ~2 min. Furthermore, it has also been demonstrated that this aptasensor is able to continuously respond to consecutive increasing concentrations of thrombin and to detect binding events as they occur. All these features make this aptasensor a good candidate to continuously study how thrombin concentration progressively increases during the initiation phase of the coagulation cascade. es_ES
dc.description.sponsorship This research was supported by a co-financed action by the European Union through the operational program of the European Regional Development Fund (FEDER) of the Valencian Community 2014-2020, the Generalitat Valenciana through the PROMETEO project AVANTI/2019/123 and by Universitat Politecnica de Valencia through grants PAID-01-17 and the project OCUSENSOR. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Micromachines es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Photonic crystal es_ES
dc.subject Photonic bandgap es_ES
dc.subject Optical biosensor es_ES
dc.subject Aptasensor es_ES
dc.subject Label-free es_ES
dc.subject Thrombin es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/mi11050464 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-17/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F123/ES/NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Martinez-Perez, P.; Gómez-Gómez, MI.; Ivanova-Angelova, T.; Griol Barres, A.; Hurtado Montañés, J.; Bellieres, LC.; García-Rupérez, J. (2020). Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor. Micromachines. 11(5):1-12. https://doi.org/10.3390/mi11050464 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/mi11050464 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 32354154 es_ES
dc.identifier.pmcid PMC7281654 es_ES
dc.relation.pasarela S\413125 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references CRAWLEY, J. T. B., ZANARDELLI, S., CHION, C. K. N. K., & LANE, D. A. (2007). The central role of thrombin in hemostasis. Journal of Thrombosis and Haemostasis, 5, 95-101. doi:10.1111/j.1538-7836.2007.02500.x es_ES
dc.description.references Mann, K. G., Brummel, K., & Butenas, S. (2003). What is all that thrombin for? Journal of Thrombosis and Haemostasis, 1(7), 1504-1514. doi:10.1046/j.1538-7836.2003.00298.x es_ES
dc.description.references Wolberg, A. S., & Campbell, R. A. (2008). Thrombin generation, fibrin clot formation and hemostasis. Transfusion and Apheresis Science, 38(1), 15-23. doi:10.1016/j.transci.2007.12.005 es_ES
dc.description.references Brummel, K. E., Paradis, S. G., Butenas, S., & Mann, K. G. (2002). Thrombin functions during tissue factor–induced blood coagulation. Blood, 100(1), 148-152. doi:10.1182/blood.v100.1.148 es_ES
dc.description.references Hockin, M. F., Jones, K. C., Everse, S. J., & Mann, K. G. (2002). A Model for the Stoichiometric Regulation of Blood Coagulation. Journal of Biological Chemistry, 277(21), 18322-18333. doi:10.1074/jbc.m201173200 es_ES
dc.description.references Danforth, C. M., Orfeo, T., Everse, S. J., Mann, K. G., & Brummel-Ziedins, K. E. (2012). Defining the Boundaries of Normal Thrombin Generation: Investigations into Hemostasis. PLoS ONE, 7(2), e30385. doi:10.1371/journal.pone.0030385 es_ES
dc.description.references Ten Cate, H., & Hemker, H. C. (2016). Thrombin Generation and Atherothrombosis: What Does the Evidence Indicate? Journal of the American Heart Association, 5(8). doi:10.1161/jaha.116.003553 es_ES
dc.description.references Tripathy, D., Sanchez, A., Yin, X., Luo, J., Martinez, J., & Grammas, P. (2013). Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia. Frontiers in Aging Neuroscience, 5. doi:10.3389/fnagi.2013.00019 es_ES
dc.description.references Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2016). Thrombin—unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer and Metastasis Reviews, 35(2), 213-233. doi:10.1007/s10555-016-9626-0 es_ES
dc.description.references Remiker, A. S., & Palumbo, J. S. (2018). Mechanisms coupling thrombin to metastasis and tumorigenesis. Thrombosis Research, 164, S29-S33. doi:10.1016/j.thromres.2017.12.020 es_ES
dc.description.references Duarte, R. C. F., Ferreira, C. N., Rios, D. R. A., Reis, H. J. dos, & Carvalho, M. das G. (2017). Thrombin generation assays for global evaluation of the hemostatic system: perspectives and limitations. Revista Brasileira de Hematologia e Hemoterapia, 39(3), 259-265. doi:10.1016/j.bjhh.2017.03.009 es_ES
dc.description.references Kintigh, J., Monagle, P., & Ignjatovic, V. (2017). A review of commercially available thrombin generation assays. Research and Practice in Thrombosis and Haemostasis, 2(1), 42-48. doi:10.1002/rth2.12048 es_ES
dc.description.references Mohammadi Aria, M., Erten, A., & Yalcin, O. (2019). Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00395 es_ES
dc.description.references Deng, B., Lin, Y., Wang, C., Li, F., Wang, Z., Zhang, H., … Le, X. C. (2014). Aptamer binding assays for proteins: The thrombin example—A review. Analytica Chimica Acta, 837, 1-15. doi:10.1016/j.aca.2014.04.055 es_ES
dc.description.references Adachi, & Nakamura. (2019). Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules, 24(23), 4229. doi:10.3390/molecules24234229 es_ES
dc.description.references Zhang, Y., Lai, B., & Juhas, M. (2019). Recent Advances in Aptamer Discovery and Applications. Molecules, 24(5), 941. doi:10.3390/molecules24050941 es_ES
dc.description.references Hong, P., Li, W., & Li, J. (2012). Applications of Aptasensors in Clinical Diagnostics. Sensors, 12(2), 1181-1193. doi:10.3390/s120201181 es_ES
dc.description.references Nguyen, P.-L., Sekhon, S. S., Ahn, J.-Y., Ko, J. H., Lee, L., Cho, S.-J., … Kim, Y.-H. (2017). Aptasensor for environmental monitoring. Toxicology and Environmental Health Sciences, 9(2), 89-101. doi:10.1007/s13530-017-0308-2 es_ES
dc.description.references Pohanka, M. (2019). Current Trends in the Biosensors for Biological Warfare Agents Assay. Materials, 12(14), 2303. doi:10.3390/ma12142303 es_ES
dc.description.references Karimi, F., & Dabbagh, S. (2019). Gel green fluorescence ssDNA aptasensor based on carbon nanotubes for detection of anthrax protective antigen. International Journal of Biological Macromolecules, 140, 842-850. doi:10.1016/j.ijbiomac.2019.08.219 es_ES
dc.description.references Damborský, P., Švitel, J., & Katrlík, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91-100. doi:10.1042/ebc20150010 es_ES
dc.description.references Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146 es_ES
dc.description.references Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 9(4), 1717. doi:10.1364/boe.9.001717 es_ES
dc.description.references Russo Krauss, I., Merlino, A., Giancola, C., Randazzo, A., Mazzarella, L., & Sica, F. (2011). Thrombin–aptamer recognition: a revealed ambiguity. Nucleic Acids Research, 39(17), 7858-7867. doi:10.1093/nar/gkr522 es_ES
dc.description.references Ponce, A. T., & Hong, K. L. (2019). A Mini-Review: Clinical Development and Potential of Aptamers for Thrombotic Events Treatment and Monitoring. Biomedicines, 7(3), 55. doi:10.3390/biomedicines7030055 es_ES
dc.description.references Chen, X., Li, T., Tu, X., & Luo, L. (2018). Label-free fluorescent aptasensor for thrombin detection based on exonuclease I assisted target recycling and SYBR Green I aided signal amplification. Sensors and Actuators B: Chemical, 265, 98-103. doi:10.1016/j.snb.2018.02.099 es_ES
dc.description.references Cho, H., Baker, B. R., Wachsmann-Hogiu, S., Pagba, C. V., Laurence, T. A., Lane, S. M., … Tok, J. B.-H. (2008). Aptamer-Based SERRS Sensor for Thrombin Detection. Nano Letters, 8(12), 4386-4390. doi:10.1021/nl802245w es_ES
dc.description.references Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics, 11(10), e201800030. doi:10.1002/jbio.201800030 es_ES
dc.description.references Oliverio, M., Perotto, S., Messina, G. C., Lovato, L., & De Angelis, F. (2017). Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. ACS Applied Materials & Interfaces, 9(35), 29394-29411. doi:10.1021/acsami.7b01583 es_ES
dc.description.references Schuck, P., & Zhao, H. (2010). The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing. Surface Plasmon Resonance, 15-54. doi:10.1007/978-1-60761-670-2_2 es_ES
dc.description.references Manfrinato, V. R., Zhang, L., Su, D., Duan, H., Hobbs, R. G., Stach, E. A., & Berggren, K. K. (2013). Resolution Limits of Electron-Beam Lithography toward the Atomic Scale. Nano Letters, 13(4), 1555-1558. doi:10.1021/nl304715p es_ES
dc.description.references Petrova, I., Konopsky, V., Nabiev, I., & Sukhanova, A. (2019). Label-Free Flow Multiplex Biosensing via Photonic Crystal Surface Mode Detection. Scientific Reports, 9(1). doi:10.1038/s41598-019-45166-3 es_ES
dc.description.references Düzgün, A., Maroto, A., Mairal, T., O’Sullivan, C., & Rius, F. X. (2010). Solid-contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins. The Analyst, 135(5), 1037. doi:10.1039/b926958d es_ES
dc.description.references Bekmurzayeva, A., Dukenbayev, K., Shaimerdenova, M., Bekniyazov, I., Ayupova, T., Sypabekova, M., … Tosi, D. (2018). Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin. Sensors, 18(12), 4298. doi:10.3390/s18124298 es_ES
dc.description.references Coelho, L., Marques Martins de Almeida, J. M., Santos, J. L., da Silva Jorge, P. A., Martins, M. C. L., Viegas, D., & Queirós, R. B. (2016). Aptamer-based fiber sensor for thrombin detection. Journal of Biomedical Optics, 21(8), 087005. doi:10.1117/1.jbo.21.8.087005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem