- -

Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor

Mostrar el registro completo del ítem

Martinez-Perez, P.; Gómez-Gómez, MI.; Ivanova-Angelova, T.; Griol Barres, A.; Hurtado Montañés, J.; Bellieres, LC.; García-Rupérez, J. (2020). Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor. Micromachines. 11(5):1-12. https://doi.org/10.3390/mi11050464

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166911

Ficheros en el ítem

Metadatos del ítem

Título: Continuous Detection of Increasing Concentrations of Thrombin Employing a Label-Free Photonic Crystal Aptasensor
Autor: Martinez-Perez, Paula Gómez-Gómez, María Isabel Ivanova-Angelova, Todora Griol Barres, Amadeu Hurtado Montañés, Juan Bellieres, Laurent Christophe García-Rupérez, Jaime
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Thrombin generation is a complex and finely regulated pathway that provokes dynamical changes of thrombin concentration in blood when a vascular injury occurs. In order to characterize the initiation phase of such ...[+]
Palabras clave: Photonic crystal , Photonic bandgap , Optical biosensor , Aptasensor , Label-free , Thrombin
Derechos de uso: Reconocimiento (by)
Fuente:
Micromachines. (issn: 2072-666X )
DOI: 10.3390/mi11050464
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/mi11050464
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-17/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F123/ES/NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/
Agradecimientos:
This research was supported by a co-financed action by the European Union through the operational program of the European Regional Development Fund (FEDER) of the Valencian Community 2014-2020, the Generalitat Valenciana ...[+]
Tipo: Artículo

References

CRAWLEY, J. T. B., ZANARDELLI, S., CHION, C. K. N. K., & LANE, D. A. (2007). The central role of thrombin in hemostasis. Journal of Thrombosis and Haemostasis, 5, 95-101. doi:10.1111/j.1538-7836.2007.02500.x

Mann, K. G., Brummel, K., & Butenas, S. (2003). What is all that thrombin for? Journal of Thrombosis and Haemostasis, 1(7), 1504-1514. doi:10.1046/j.1538-7836.2003.00298.x

Wolberg, A. S., & Campbell, R. A. (2008). Thrombin generation, fibrin clot formation and hemostasis. Transfusion and Apheresis Science, 38(1), 15-23. doi:10.1016/j.transci.2007.12.005 [+]
CRAWLEY, J. T. B., ZANARDELLI, S., CHION, C. K. N. K., & LANE, D. A. (2007). The central role of thrombin in hemostasis. Journal of Thrombosis and Haemostasis, 5, 95-101. doi:10.1111/j.1538-7836.2007.02500.x

Mann, K. G., Brummel, K., & Butenas, S. (2003). What is all that thrombin for? Journal of Thrombosis and Haemostasis, 1(7), 1504-1514. doi:10.1046/j.1538-7836.2003.00298.x

Wolberg, A. S., & Campbell, R. A. (2008). Thrombin generation, fibrin clot formation and hemostasis. Transfusion and Apheresis Science, 38(1), 15-23. doi:10.1016/j.transci.2007.12.005

Brummel, K. E., Paradis, S. G., Butenas, S., & Mann, K. G. (2002). Thrombin functions during tissue factor–induced blood coagulation. Blood, 100(1), 148-152. doi:10.1182/blood.v100.1.148

Hockin, M. F., Jones, K. C., Everse, S. J., & Mann, K. G. (2002). A Model for the Stoichiometric Regulation of Blood Coagulation. Journal of Biological Chemistry, 277(21), 18322-18333. doi:10.1074/jbc.m201173200

Danforth, C. M., Orfeo, T., Everse, S. J., Mann, K. G., & Brummel-Ziedins, K. E. (2012). Defining the Boundaries of Normal Thrombin Generation: Investigations into Hemostasis. PLoS ONE, 7(2), e30385. doi:10.1371/journal.pone.0030385

Ten Cate, H., & Hemker, H. C. (2016). Thrombin Generation and Atherothrombosis: What Does the Evidence Indicate? Journal of the American Heart Association, 5(8). doi:10.1161/jaha.116.003553

Tripathy, D., Sanchez, A., Yin, X., Luo, J., Martinez, J., & Grammas, P. (2013). Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia. Frontiers in Aging Neuroscience, 5. doi:10.3389/fnagi.2013.00019

Wojtukiewicz, M. Z., Hempel, D., Sierko, E., Tucker, S. C., & Honn, K. V. (2016). Thrombin—unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer and Metastasis Reviews, 35(2), 213-233. doi:10.1007/s10555-016-9626-0

Remiker, A. S., & Palumbo, J. S. (2018). Mechanisms coupling thrombin to metastasis and tumorigenesis. Thrombosis Research, 164, S29-S33. doi:10.1016/j.thromres.2017.12.020

Duarte, R. C. F., Ferreira, C. N., Rios, D. R. A., Reis, H. J. dos, & Carvalho, M. das G. (2017). Thrombin generation assays for global evaluation of the hemostatic system: perspectives and limitations. Revista Brasileira de Hematologia e Hemoterapia, 39(3), 259-265. doi:10.1016/j.bjhh.2017.03.009

Kintigh, J., Monagle, P., & Ignjatovic, V. (2017). A review of commercially available thrombin generation assays. Research and Practice in Thrombosis and Haemostasis, 2(1), 42-48. doi:10.1002/rth2.12048

Mohammadi Aria, M., Erten, A., & Yalcin, O. (2019). Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00395

Deng, B., Lin, Y., Wang, C., Li, F., Wang, Z., Zhang, H., … Le, X. C. (2014). Aptamer binding assays for proteins: The thrombin example—A review. Analytica Chimica Acta, 837, 1-15. doi:10.1016/j.aca.2014.04.055

Adachi, & Nakamura. (2019). Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules, 24(23), 4229. doi:10.3390/molecules24234229

Zhang, Y., Lai, B., & Juhas, M. (2019). Recent Advances in Aptamer Discovery and Applications. Molecules, 24(5), 941. doi:10.3390/molecules24050941

Hong, P., Li, W., & Li, J. (2012). Applications of Aptasensors in Clinical Diagnostics. Sensors, 12(2), 1181-1193. doi:10.3390/s120201181

Nguyen, P.-L., Sekhon, S. S., Ahn, J.-Y., Ko, J. H., Lee, L., Cho, S.-J., … Kim, Y.-H. (2017). Aptasensor for environmental monitoring. Toxicology and Environmental Health Sciences, 9(2), 89-101. doi:10.1007/s13530-017-0308-2

Pohanka, M. (2019). Current Trends in the Biosensors for Biological Warfare Agents Assay. Materials, 12(14), 2303. doi:10.3390/ma12142303

Karimi, F., & Dabbagh, S. (2019). Gel green fluorescence ssDNA aptasensor based on carbon nanotubes for detection of anthrax protective antigen. International Journal of Biological Macromolecules, 140, 842-850. doi:10.1016/j.ijbiomac.2019.08.219

Damborský, P., Švitel, J., & Katrlík, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91-100. doi:10.1042/ebc20150010

Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146

Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 9(4), 1717. doi:10.1364/boe.9.001717

Russo Krauss, I., Merlino, A., Giancola, C., Randazzo, A., Mazzarella, L., & Sica, F. (2011). Thrombin–aptamer recognition: a revealed ambiguity. Nucleic Acids Research, 39(17), 7858-7867. doi:10.1093/nar/gkr522

Ponce, A. T., & Hong, K. L. (2019). A Mini-Review: Clinical Development and Potential of Aptamers for Thrombotic Events Treatment and Monitoring. Biomedicines, 7(3), 55. doi:10.3390/biomedicines7030055

Chen, X., Li, T., Tu, X., & Luo, L. (2018). Label-free fluorescent aptasensor for thrombin detection based on exonuclease I assisted target recycling and SYBR Green I aided signal amplification. Sensors and Actuators B: Chemical, 265, 98-103. doi:10.1016/j.snb.2018.02.099

Cho, H., Baker, B. R., Wachsmann-Hogiu, S., Pagba, C. V., Laurence, T. A., Lane, S. M., … Tok, J. B.-H. (2008). Aptamer-Based SERRS Sensor for Thrombin Detection. Nano Letters, 8(12), 4386-4390. doi:10.1021/nl802245w

Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics, 11(10), e201800030. doi:10.1002/jbio.201800030

Oliverio, M., Perotto, S., Messina, G. C., Lovato, L., & De Angelis, F. (2017). Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. ACS Applied Materials & Interfaces, 9(35), 29394-29411. doi:10.1021/acsami.7b01583

Schuck, P., & Zhao, H. (2010). The Role of Mass Transport Limitation and Surface Heterogeneity in the Biophysical Characterization of Macromolecular Binding Processes by SPR Biosensing. Surface Plasmon Resonance, 15-54. doi:10.1007/978-1-60761-670-2_2

Manfrinato, V. R., Zhang, L., Su, D., Duan, H., Hobbs, R. G., Stach, E. A., & Berggren, K. K. (2013). Resolution Limits of Electron-Beam Lithography toward the Atomic Scale. Nano Letters, 13(4), 1555-1558. doi:10.1021/nl304715p

Petrova, I., Konopsky, V., Nabiev, I., & Sukhanova, A. (2019). Label-Free Flow Multiplex Biosensing via Photonic Crystal Surface Mode Detection. Scientific Reports, 9(1). doi:10.1038/s41598-019-45166-3

Düzgün, A., Maroto, A., Mairal, T., O’Sullivan, C., & Rius, F. X. (2010). Solid-contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins. The Analyst, 135(5), 1037. doi:10.1039/b926958d

Bekmurzayeva, A., Dukenbayev, K., Shaimerdenova, M., Bekniyazov, I., Ayupova, T., Sypabekova, M., … Tosi, D. (2018). Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin. Sensors, 18(12), 4298. doi:10.3390/s18124298

Coelho, L., Marques Martins de Almeida, J. M., Santos, J. L., da Silva Jorge, P. A., Martins, M. C. L., Viegas, D., & Queirós, R. B. (2016). Aptamer-based fiber sensor for thrombin detection. Journal of Biomedical Optics, 21(8), 087005. doi:10.1117/1.jbo.21.8.087005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem