- -

Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms

Show full item record

Borsai, O.; Al Hassan, M.; Negrusier, C.; Raigón Jiménez, MD.; Boscaiu, M.; Sestras, RE.; Vicente, O. (2020). Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms. Plants. 9(12):1-24. https://doi.org/10.3390/plants9121660

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166913

Files in this item

Item Metadata

Title: Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms
Author: Borsai, Orsolya Al Hassan, Mohamad Negrusier, Cornel Raigón Jiménez, Mª Dolores Boscaiu, Monica Sestras, Radu E. Vicente, Oscar
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Issued date:
[EN] Climate change and its detrimental effects on agricultural production, freshwater availability and biodiversity accentuated the need for more stress-tolerant varieties of crops. This requires unraveling the underlying ...[+]
Subjects: Abiotic stress , Antioxidant activity , Growth inhibition , Ion homeostasis , Proline , Salt stress
Copyrigths: Reconocimiento (by)
Plants. (eissn: 2223-7747 )
DOI: 10.3390/plants9121660
Publisher version: https://doi.org/10.3390/plants9121660
Project ID:
This research and publication was supported by the funds from the National Research Development Projects to finance excellence (PFE)-37/2018-2020 granted by the Romanian Ministry of Research and Innovation.
Type: Artículo


Grime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169-1194. doi:10.1086/283244

Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi:10.1016/s0168-9452(01)00452-6

Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410 [+]
Grime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169-1194. doi:10.1086/283244

Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi:10.1016/s0168-9452(01)00452-6

Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410

Katerji, N., van Hoorn, J. ., Hamdy, A., & Mastrorilli, M. (2003). Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management, 62(1), 37-66. doi:10.1016/s0378-3774(03)00005-2

Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., … Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01147

Owens, S. (2001). Salt of the Earth. EMBO reports, 2(10), 877-879. doi:10.1093/embo-reports/kve219

Cuevas, J., Daliakopoulos, I. N., del Moral, F., Hueso, J. J., & Tsanis, I. K. (2019). A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy, 9(6), 295. doi:10.3390/agronomy9060295

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.x

Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A., & Harmon, J. (2016). Soil Salinity: A Threat to Global Food Security. Agronomy Journal, 108(6), 2189-2200. doi:10.2134/agronj2016.06.0368

Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. doi:10.1093/jxb/err460

Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0

Parida, A. K., Das, A. B., & Mittra, B. (2004). Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees - Structure and Function, 18(2), 167-174. doi:10.1007/s00468-003-0293-8

He, M., He, C.-Q., & Ding, N.-Z. (2018). Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01771

Rhodes, D., & Hanson, A. D. (1993). Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 357-384. doi:10.1146/annurev.pp.44.060193.002041

Rahnama, H., & Ebrahimzadeh, H. (2005). The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biologia plantarum, 49(1), 93-97. doi:10.1007/s10535-005-3097-4

Allen, J. A., Chambers, J. L., & Stine, M. (1994). Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiology, 14(7-8-9), 843-853. doi:10.1093/treephys/14.7-8-9.843

Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911

Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x

Flowers, T. J., Hajibagheri, M. A., & Clipson, N. J. W. (1986). Halophytes. The Quarterly Review of Biology, 61(3), 313-337. doi:10.1086/415032

Van de Wouw, M., Kik, C., van Hintum, T., van Treuren, R., & Visser, B. (2009). Genetic erosion in crops: concept, research results and challenges. Plant Genetic Resources, 8(1), 1-15. doi:10.1017/s1479262109990062

Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978

Dossa, K., Mmadi, M. A., Zhou, R., Zhang, T., Su, R., Zhang, Y., … Zhang, X. (2019). Depicting the Core Transcriptome Modulating Multiple Abiotic Stresses Responses in Sesame (Sesamum indicum L.). International Journal of Molecular Sciences, 20(16), 3930. doi:10.3390/ijms20163930

AL HASSAN, M. (s. f.). Comparative analyses of plant responses to drought and salt stress in related taxa: A useful approach to study stress tolerance mechanisms. doi:10.4995/thesis/10251/61985

Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00537

Misra, A. N., Latowski, D., & Strzalka, K. (2006). The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress. Russian Journal of Plant Physiology, 53(1), 102-109. doi:10.1134/s1021443706010134

Abdul Qados, A. M. S. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10(1), 7-15. doi:10.1016/j.jssas.2010.06.002

Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). PLANT CELLULAR AND MOLECULAR RESPONSES TO HIGH SALINITY. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463

Rhodes, D., Nadolska-Orczyk, A., & Rich, P. J. (s. f.). Salinity, Osmolytes and Compatible Solutes. Salinity: Environment - Plants - Molecules, 181-204. doi:10.1007/0-306-48155-3_9

Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389

Xu, J., Tian, Y.-S., Peng, R.-H., Xiong, A.-S., Zhu, B., Jin, X.-F., … Yao, Q.-H. (2010). AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta, 231(6), 1251-1260. doi:10.1007/s00425-010-1122-0

Nakabayashi, R., & Saito, K. (2015). Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology, 24, 10-16. doi:10.1016/j.pbi.2015.01.003

Kim, I., & Fisher, D. G. (1990). Structural aspects of the leaves of seven species of Portulaca growing in Hawaii. Canadian Journal of Botany, 68(8), 1803-1811. doi:10.1139/b90-233

Yazici, I., Türkan, I., Sekmen, A. H., & Demiral, T. (2007). Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany, 61(1), 49-57. doi:10.1016/j.envexpbot.2007.02.010

Sdouga, D., Ben Amor, F., Ghribi, S., Kabtni, S., Tebini, M., Branca, F., … Marghali, S. (2019). An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses. Ecotoxicology and Environmental Safety, 172, 45-52. doi:10.1016/j.ecoenv.2018.12.082

Grieve, C. M., & Suarez, D. L. (1997). Plant and Soil, 192(2), 277-283. doi:10.1023/a:1004276804529

Kafi, M., & Rahimi, Z. (2011). Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleraceaL.). Soil Science and Plant Nutrition, 57(2), 341-347. doi:10.1080/00380768.2011.567398

Uddin, M. K., Juraimi, A. S., Ali, M. E., & Ismail, M. R. (2012). Evaluation of Antioxidant Properties and Mineral Composition of Purslane (Portulaca oleracea L.) at Different Growth Stages. International Journal of Molecular Sciences, 13(8), 10257-10267. doi:10.3390/ijms130810257

Alam, M. A., Juraimi, A. S., Rafii, M. Y., Abdul Hamid, A., & Aslani, F. (2014). Screening of Purslane (Portulaca oleraceaL.) Accessions for High Salt Tolerance. The Scientific World Journal, 2014, 1-12. doi:10.1155/2014/627916

KARAKAŞ, S., ÇULLU, M. A., & DİKİLİTAŞ, M. (2017). Comparison of two halophyte species (Salsola soda and Portulaca oleracea)for salt removal potential under different soil salinity conditions. TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 41, 183-190. doi:10.3906/tar-1611-82

Hammami, H., Parsa, M., Mohassel, M. H. R., Rahimi, S., & Mijani, S. (2015). Weeds ability to phytoremediate cadmium-contaminated soil. International Journal of Phytoremediation, 18(1), 48-53. doi:10.1080/15226514.2015.1058336

Zaman, S., Bilal, M., Du, H., & Che, S. (2020). Morphophysiological and Comparative Metabolic Profiling of Purslane Genotypes (Portulaca oleracea L.) under Salt Stress. BioMed Research International, 2020, 1-17. doi:10.1155/2020/4827045

Alam, M. A., Juraimi, A. S., Rafii, M. Y., Hamid, A. A., Aslani, F., & Hakim, M. A. (2016). Salinity-induced changes in the morphology and major mineral nutrient composition of purslane (Portulaca oleracea L.) accessions. Biological Research, 49(1). doi:10.1186/s40659-016-0084-5

Mulry, K. R., Hanson, B. A., & Dudle, D. A. (2015). Alternative Strategies in Response to Saline Stress in Two Varieties of Portulaca oleracea (Purslane). PLOS ONE, 10(9), e0138723. doi:10.1371/journal.pone.0138723

Borsai, O., Hassan, M. A., Boscaiu, M., Sestras, R. E., & Vicente, O. (2018). The genus Portulaca as a suitable model to study the mechanisms of plant tolerance to drought and salinity. The EuroBiotech Journal, 2(2), 104-113. doi:10.2478/ebtj-2018-0014

Guralnick, L. J., Gilbert, K. E., Denio, D., & Antico, N. (2020). The Development of Crassulacean Acid Metabolism (CAM) Photosynthesis in Cotyledons of the C4 Species, Portulaca grandiflora (Portulacaceae). Plants, 9(1), 55. doi:10.3390/plants9010055

Grigore, M.-N., & Toma, C. (2017). Succulence. Anatomical Adaptations of Halophytes, 41-124. doi:10.1007/978-3-319-66480-4_3

Grigore, M.-N., & Toma, C. (2017). Kranz Anatomy. Anatomical Adaptations of Halophytes, 241-272. doi:10.1007/978-3-319-66480-4_6

Bernstein, L. (1963). OSMOTIC ADJUSTMENT OF PLANTS TO SALINE MEDIA. II. DYNAMIC PHASE. American Journal of Botany, 50(4), 360-370. doi:10.1002/j.1537-2197.1963.tb07204.x

DUBEY, S., BHARGAVA, A., FUENTES, F., SHUKLA, S., & SRIVASTAVA, S. (2020). Effect of salinity stress on yield and quality parameters in flax (Linum usitatissimum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 954-966. doi:10.15835/nbha48211861

HAND, M. J., TAFFOUO, V. D., NOUCK, A. E., NYEMENE, K. P. J., TONFACK, B., MEGUEKAM, T. L., & YOUMBI, E. (2017). Effects of Salt Stress on Plant Growth, Nutrient Partitioning, Chlorophyll Content, Leaf Relative Water Content, Accumulation of Osmolytes and Antioxidant Compounds in Pepper (Capsicum annuum L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(2), 481-490. doi:10.15835/nbha45210928

Ayala-Astorga, G. I., & Alcaraz-Meléndez, L. (2010). Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortunei (Seemann & Hemsley) grown in vitro. Electronic Journal of Biotechnology, 13(5), 0-0. doi:10.2225/vol13-issue5-fulltext-13

Bayuelo-Jiménez, J. S., Jasso-Plata, N., & Ochoa, I. (2012). Growth and Physiological Responses ofPhaseolusSpecies to Salinity Stress. International Journal of Agronomy, 2012, 1-13. doi:10.1155/2012/527673

Akcin, A., & Yalcin, E. (2015). Effect of salinity stress on chlorophyll, carotenoid content, and proline in Salicornia prostrata Pall. and Suaeda prostrata Pall. subsp. prostrata (Amaranthaceae). Brazilian Journal of Botany, 39(1), 101-106. doi:10.1007/s40415-015-0218-y

Al Hassan, M., Chaura, J., López-Gresa, M. P., Borsai, O., Daniso, E., Donat-Torres, M. P., … Boscaiu, M. (2016). Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00473

Rabhi, M., Castagna, A., Remorini, D., Scattino, C., Smaoui, A., Ranieri, A., & Abdelly, C. (2012). Photosynthetic responses to salinity in two obligate halophytes: Sesuvium portulacastrum and Tecticornia indica. South African Journal of Botany, 79, 39-47. doi:10.1016/j.sajb.2011.11.007

Rangani, J., Parida, A. K., Panda, A., & Kumari, A. (2016). Coordinated Changes in Antioxidative Enzymes Protect the Photosynthetic Machinery from Salinity Induced Oxidative Damage and Confer Salt Tolerance in an Extreme Halophyte Salvadora persica L. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00050

Redondo-Gómez, S., Wharmby, C., Castillo, J. M., Mateos-Naranjo, E., Luque, C. J., de Cires, A., … Enrique Figueroa, M. (2006). Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiologia Plantarum, 128(1), 116-124. doi:10.1111/j.1399-3054.2006.00719.x

Agathokleous, E., Feng, Z., & Peñuelas, J. (2020). Chlorophyll hormesis: Are chlorophylls major components of stress biology in higher plants? Science of The Total Environment, 726, 138637. doi:10.1016/j.scitotenv.2020.138637

Miller, N. J., Sampson, J., Candeias, L. P., Bramley, P. M., & Rice-Evans, C. A. (1996). Antioxidant activities of carotenes and xanthophylls. FEBS Letters, 384(3), 240-242. doi:10.1016/0014-5793(96)00323-7

García‐Caparrós, P., Hasanuzzaman, M., & Lao, M. T. (2019). Oxidative Stress and Antioxidant Defense in Plants Under Salinity. Reactive Oxygen, Nitrogen and Sulfur Species in Plants, 291-309. doi:10.1002/9781119468677.ch12

Sun, H., Sun, X., Wang, H., & Ma, X. (2020). Advances in salt tolerance molecular mechanism in tobacco plants. Hereditas, 157(1). doi:10.1186/s41065-020-00118-0

Lutts, S., Majerus, V., & Kinet, J.-M. (1999). NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiologia Plantarum, 105(3), 450-458. doi:10.1034/j.1399-3054.1999.105309.x

Lacerda, C. F. de, Cambraia, J., Oliva, M. A., & Ruiz, H. A. (2003). Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress. Brazilian Journal of Plant Physiology, 15(2), 113-118. doi:10.1590/s1677-04202003000200007

Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582

DEMIRAL, T., & TURKAN, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi:10.1016/j.envexpbot.2004.03.017

Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359

Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017

Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161-175. doi:10.3109/07388550903524243

Flowers, T. J., Munns, R., & Colmer, T. D. (2014). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 115(3), 419-431. doi:10.1093/aob/mcu217

Li, W., Zhang, H., Zeng, Y., Xiang, L., Lei, Z., Huang, Q., … Cheng, Q. (2020). A Salt Tolerance Evaluation Method for Sunflower (Helianthus annuus L.) at the Seed Germination Stage. Scientific Reports, 10(1). doi:10.1038/s41598-020-67210-3

LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017

Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524

Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2




This item appears in the following Collection(s)

Show full item record