- -

Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms

Show simple item record

Files in this item

dc.contributor.author Borsai, Orsolya es_ES
dc.contributor.author Al Hassan, Mohamad es_ES
dc.contributor.author Negrusier, Cornel es_ES
dc.contributor.author Raigón Jiménez, Mª Dolores es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.contributor.author Sestras, Radu E. es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.date.accessioned 2021-05-28T03:34:14Z
dc.date.available 2021-05-28T03:34:14Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166913
dc.description.abstract [EN] Climate change and its detrimental effects on agricultural production, freshwater availability and biodiversity accentuated the need for more stress-tolerant varieties of crops. This requires unraveling the underlying pathways that convey tolerance to abiotic stress in wild relatives of food crops, industrial crops and ornamentals, whose tolerance was not eroded by crop cycles. In this work we try to demonstrate the feasibility of such strategy applying and investigating the effects of saline stress in different species and cultivars of Portulaca. We attempted to unravel the main mechanisms of stress tolerance in this genus and to identify genotypes with higher tolerance, a procedure that could be used as an early detection method for other ornamental and minor crops. To investigate these mechanisms, six-week-old seedlings were subjected to saline stress for 5 weeks with increasing salt concentrations (up to 400 mM NaCl). Several growth parameters and biochemical stress markers were determined in treated and control plants, such as photosynthetic pigments, monovalent ions (Na+, K+ and Cl-), different osmolytes (proline and soluble sugars), oxidative stress markers (malondialdehyde-a by-product of membrane lipid peroxidation-MDA) and non-enzymatic antioxidants (total phenolic compounds and total flavonoids). The applied salt stress inhibited plant growth, degraded photosynthetic pigments, increased concentrations of specific osmolytes in both leaves and roots, but did not induce significant oxidative stress, as demonstrated by only small fluctuations in MDA levels. All Portulaca genotypes analyzed were found to be Na+ and Cl- includers, accumulating high amounts of these ions under saline stress conditions, but P. grandiflora proved to be more salt tolerant, showing only a small reduction under growth stress, an increased flower production and the lowest reduction in K+/Na+ rate in its leaves. es_ES
dc.description.sponsorship This research and publication was supported by the funds from the National Research Development Projects to finance excellence (PFE)-37/2018-2020 granted by the Romanian Ministry of Research and Innovation. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation MCI/37/2018-2020 es_ES
dc.relation.ispartof Plants es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Abiotic stress es_ES
dc.subject Antioxidant activity es_ES
dc.subject Growth inhibition es_ES
dc.subject Ion homeostasis es_ES
dc.subject Proline es_ES
dc.subject Salt stress es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.title Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/plants9121660 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Borsai, O.; Al Hassan, M.; Negrusier, C.; Raigón Jiménez, MD.; Boscaiu, M.; Sestras, RE.; Vicente, O. (2020). Responses to Salt Stress in Portulaca: Insight into Its Tolerance Mechanisms. Plants. 9(12):1-24. https://doi.org/10.3390/plants9121660 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/plants9121660 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2223-7747 es_ES
dc.identifier.pmid 33260911 es_ES
dc.identifier.pmcid PMC7760961 es_ES
dc.relation.pasarela S\422512 es_ES
dc.contributor.funder Ministry of Research and Innovation, Rumanía es_ES
dc.description.references Grime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169-1194. doi:10.1086/283244 es_ES
dc.description.references Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi:10.1016/s0168-9452(01)00452-6 es_ES
dc.description.references Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410 es_ES
dc.description.references Katerji, N., van Hoorn, J. ., Hamdy, A., & Mastrorilli, M. (2003). Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management, 62(1), 37-66. doi:10.1016/s0378-3774(03)00005-2 es_ES
dc.description.references Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., … Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01147 es_ES
dc.description.references Owens, S. (2001). Salt of the Earth. EMBO reports, 2(10), 877-879. doi:10.1093/embo-reports/kve219 es_ES
dc.description.references Cuevas, J., Daliakopoulos, I. N., del Moral, F., Hueso, J. J., & Tsanis, I. K. (2019). A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy, 9(6), 295. doi:10.3390/agronomy9060295 es_ES
dc.description.references Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.x es_ES
dc.description.references Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A., & Harmon, J. (2016). Soil Salinity: A Threat to Global Food Security. Agronomy Journal, 108(6), 2189-2200. doi:10.2134/agronj2016.06.0368 es_ES
dc.description.references Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. doi:10.1093/jxb/err460 es_ES
dc.description.references Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 es_ES
dc.description.references Parida, A. K., Das, A. B., & Mittra, B. (2004). Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees - Structure and Function, 18(2), 167-174. doi:10.1007/s00468-003-0293-8 es_ES
dc.description.references He, M., He, C.-Q., & Ding, N.-Z. (2018). Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01771 es_ES
dc.description.references Rhodes, D., & Hanson, A. D. (1993). Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 357-384. doi:10.1146/annurev.pp.44.060193.002041 es_ES
dc.description.references Rahnama, H., & Ebrahimzadeh, H. (2005). The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biologia plantarum, 49(1), 93-97. doi:10.1007/s10535-005-3097-4 es_ES
dc.description.references Allen, J. A., Chambers, J. L., & Stine, M. (1994). Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiology, 14(7-8-9), 843-853. doi:10.1093/treephys/14.7-8-9.843 es_ES
dc.description.references Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 es_ES
dc.description.references Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x es_ES
dc.description.references Flowers, T. J., Hajibagheri, M. A., & Clipson, N. J. W. (1986). Halophytes. The Quarterly Review of Biology, 61(3), 313-337. doi:10.1086/415032 es_ES
dc.description.references Van de Wouw, M., Kik, C., van Hintum, T., van Treuren, R., & Visser, B. (2009). Genetic erosion in crops: concept, research results and challenges. Plant Genetic Resources, 8(1), 1-15. doi:10.1017/s1479262109990062 es_ES
dc.description.references Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978 es_ES
dc.description.references Dossa, K., Mmadi, M. A., Zhou, R., Zhang, T., Su, R., Zhang, Y., … Zhang, X. (2019). Depicting the Core Transcriptome Modulating Multiple Abiotic Stresses Responses in Sesame (Sesamum indicum L.). International Journal of Molecular Sciences, 20(16), 3930. doi:10.3390/ijms20163930 es_ES
dc.description.references AL HASSAN, M. (s. f.). Comparative analyses of plant responses to drought and salt stress in related taxa: A useful approach to study stress tolerance mechanisms. doi:10.4995/thesis/10251/61985 es_ES
dc.description.references Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00537 es_ES
dc.description.references Misra, A. N., Latowski, D., & Strzalka, K. (2006). The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress. Russian Journal of Plant Physiology, 53(1), 102-109. doi:10.1134/s1021443706010134 es_ES
dc.description.references Abdul Qados, A. M. S. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10(1), 7-15. doi:10.1016/j.jssas.2010.06.002 es_ES
dc.description.references Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). PLANT CELLULAR AND MOLECULAR RESPONSES TO HIGH SALINITY. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463 es_ES
dc.description.references Rhodes, D., Nadolska-Orczyk, A., & Rich, P. J. (s. f.). Salinity, Osmolytes and Compatible Solutes. Salinity: Environment - Plants - Molecules, 181-204. doi:10.1007/0-306-48155-3_9 es_ES
dc.description.references Ozgur, R., Uzilday, B., Sekmen, A. H., & Turkan, I. (2013). Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology, 40(9), 832. doi:10.1071/fp12389 es_ES
dc.description.references Xu, J., Tian, Y.-S., Peng, R.-H., Xiong, A.-S., Zhu, B., Jin, X.-F., … Yao, Q.-H. (2010). AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta, 231(6), 1251-1260. doi:10.1007/s00425-010-1122-0 es_ES
dc.description.references Nakabayashi, R., & Saito, K. (2015). Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology, 24, 10-16. doi:10.1016/j.pbi.2015.01.003 es_ES
dc.description.references Kim, I., & Fisher, D. G. (1990). Structural aspects of the leaves of seven species of Portulaca growing in Hawaii. Canadian Journal of Botany, 68(8), 1803-1811. doi:10.1139/b90-233 es_ES
dc.description.references Yazici, I., Türkan, I., Sekmen, A. H., & Demiral, T. (2007). Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany, 61(1), 49-57. doi:10.1016/j.envexpbot.2007.02.010 es_ES
dc.description.references Sdouga, D., Ben Amor, F., Ghribi, S., Kabtni, S., Tebini, M., Branca, F., … Marghali, S. (2019). An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses. Ecotoxicology and Environmental Safety, 172, 45-52. doi:10.1016/j.ecoenv.2018.12.082 es_ES
dc.description.references Grieve, C. M., & Suarez, D. L. (1997). Plant and Soil, 192(2), 277-283. doi:10.1023/a:1004276804529 es_ES
dc.description.references Kafi, M., & Rahimi, Z. (2011). Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleraceaL.). Soil Science and Plant Nutrition, 57(2), 341-347. doi:10.1080/00380768.2011.567398 es_ES
dc.description.references Uddin, M. K., Juraimi, A. S., Ali, M. E., & Ismail, M. R. (2012). Evaluation of Antioxidant Properties and Mineral Composition of Purslane (Portulaca oleracea L.) at Different Growth Stages. International Journal of Molecular Sciences, 13(8), 10257-10267. doi:10.3390/ijms130810257 es_ES
dc.description.references Alam, M. A., Juraimi, A. S., Rafii, M. Y., Abdul Hamid, A., & Aslani, F. (2014). Screening of Purslane (Portulaca oleraceaL.) Accessions for High Salt Tolerance. The Scientific World Journal, 2014, 1-12. doi:10.1155/2014/627916 es_ES
dc.description.references KARAKAŞ, S., ÇULLU, M. A., & DİKİLİTAŞ, M. (2017). Comparison of two halophyte species (Salsola soda and Portulaca oleracea)for salt removal potential under different soil salinity conditions. TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 41, 183-190. doi:10.3906/tar-1611-82 es_ES
dc.description.references Hammami, H., Parsa, M., Mohassel, M. H. R., Rahimi, S., & Mijani, S. (2015). Weeds ability to phytoremediate cadmium-contaminated soil. International Journal of Phytoremediation, 18(1), 48-53. doi:10.1080/15226514.2015.1058336 es_ES
dc.description.references Zaman, S., Bilal, M., Du, H., & Che, S. (2020). Morphophysiological and Comparative Metabolic Profiling of Purslane Genotypes (Portulaca oleracea L.) under Salt Stress. BioMed Research International, 2020, 1-17. doi:10.1155/2020/4827045 es_ES
dc.description.references Alam, M. A., Juraimi, A. S., Rafii, M. Y., Hamid, A. A., Aslani, F., & Hakim, M. A. (2016). Salinity-induced changes in the morphology and major mineral nutrient composition of purslane (Portulaca oleracea L.) accessions. Biological Research, 49(1). doi:10.1186/s40659-016-0084-5 es_ES
dc.description.references Mulry, K. R., Hanson, B. A., & Dudle, D. A. (2015). Alternative Strategies in Response to Saline Stress in Two Varieties of Portulaca oleracea (Purslane). PLOS ONE, 10(9), e0138723. doi:10.1371/journal.pone.0138723 es_ES
dc.description.references Borsai, O., Hassan, M. A., Boscaiu, M., Sestras, R. E., & Vicente, O. (2018). The genus Portulaca as a suitable model to study the mechanisms of plant tolerance to drought and salinity. The EuroBiotech Journal, 2(2), 104-113. doi:10.2478/ebtj-2018-0014 es_ES
dc.description.references Guralnick, L. J., Gilbert, K. E., Denio, D., & Antico, N. (2020). The Development of Crassulacean Acid Metabolism (CAM) Photosynthesis in Cotyledons of the C4 Species, Portulaca grandiflora (Portulacaceae). Plants, 9(1), 55. doi:10.3390/plants9010055 es_ES
dc.description.references Grigore, M.-N., & Toma, C. (2017). Succulence. Anatomical Adaptations of Halophytes, 41-124. doi:10.1007/978-3-319-66480-4_3 es_ES
dc.description.references Grigore, M.-N., & Toma, C. (2017). Kranz Anatomy. Anatomical Adaptations of Halophytes, 241-272. doi:10.1007/978-3-319-66480-4_6 es_ES
dc.description.references Bernstein, L. (1963). OSMOTIC ADJUSTMENT OF PLANTS TO SALINE MEDIA. II. DYNAMIC PHASE. American Journal of Botany, 50(4), 360-370. doi:10.1002/j.1537-2197.1963.tb07204.x es_ES
dc.description.references DUBEY, S., BHARGAVA, A., FUENTES, F., SHUKLA, S., & SRIVASTAVA, S. (2020). Effect of salinity stress on yield and quality parameters in flax (Linum usitatissimum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 954-966. doi:10.15835/nbha48211861 es_ES
dc.description.references HAND, M. J., TAFFOUO, V. D., NOUCK, A. E., NYEMENE, K. P. J., TONFACK, B., MEGUEKAM, T. L., & YOUMBI, E. (2017). Effects of Salt Stress on Plant Growth, Nutrient Partitioning, Chlorophyll Content, Leaf Relative Water Content, Accumulation of Osmolytes and Antioxidant Compounds in Pepper (Capsicum annuum L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(2), 481-490. doi:10.15835/nbha45210928 es_ES
dc.description.references Ayala-Astorga, G. I., & Alcaraz-Meléndez, L. (2010). Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortunei (Seemann & Hemsley) grown in vitro. Electronic Journal of Biotechnology, 13(5), 0-0. doi:10.2225/vol13-issue5-fulltext-13 es_ES
dc.description.references Bayuelo-Jiménez, J. S., Jasso-Plata, N., & Ochoa, I. (2012). Growth and Physiological Responses ofPhaseolusSpecies to Salinity Stress. International Journal of Agronomy, 2012, 1-13. doi:10.1155/2012/527673 es_ES
dc.description.references Akcin, A., & Yalcin, E. (2015). Effect of salinity stress on chlorophyll, carotenoid content, and proline in Salicornia prostrata Pall. and Suaeda prostrata Pall. subsp. prostrata (Amaranthaceae). Brazilian Journal of Botany, 39(1), 101-106. doi:10.1007/s40415-015-0218-y es_ES
dc.description.references Al Hassan, M., Chaura, J., López-Gresa, M. P., Borsai, O., Daniso, E., Donat-Torres, M. P., … Boscaiu, M. (2016). Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00473 es_ES
dc.description.references Rabhi, M., Castagna, A., Remorini, D., Scattino, C., Smaoui, A., Ranieri, A., & Abdelly, C. (2012). Photosynthetic responses to salinity in two obligate halophytes: Sesuvium portulacastrum and Tecticornia indica. South African Journal of Botany, 79, 39-47. doi:10.1016/j.sajb.2011.11.007 es_ES
dc.description.references Rangani, J., Parida, A. K., Panda, A., & Kumari, A. (2016). Coordinated Changes in Antioxidative Enzymes Protect the Photosynthetic Machinery from Salinity Induced Oxidative Damage and Confer Salt Tolerance in an Extreme Halophyte Salvadora persica L. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00050 es_ES
dc.description.references Redondo-Gómez, S., Wharmby, C., Castillo, J. M., Mateos-Naranjo, E., Luque, C. J., de Cires, A., … Enrique Figueroa, M. (2006). Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiologia Plantarum, 128(1), 116-124. doi:10.1111/j.1399-3054.2006.00719.x es_ES
dc.description.references Agathokleous, E., Feng, Z., & Peñuelas, J. (2020). Chlorophyll hormesis: Are chlorophylls major components of stress biology in higher plants? Science of The Total Environment, 726, 138637. doi:10.1016/j.scitotenv.2020.138637 es_ES
dc.description.references Miller, N. J., Sampson, J., Candeias, L. P., Bramley, P. M., & Rice-Evans, C. A. (1996). Antioxidant activities of carotenes and xanthophylls. FEBS Letters, 384(3), 240-242. doi:10.1016/0014-5793(96)00323-7 es_ES
dc.description.references García‐Caparrós, P., Hasanuzzaman, M., & Lao, M. T. (2019). Oxidative Stress and Antioxidant Defense in Plants Under Salinity. Reactive Oxygen, Nitrogen and Sulfur Species in Plants, 291-309. doi:10.1002/9781119468677.ch12 es_ES
dc.description.references Sun, H., Sun, X., Wang, H., & Ma, X. (2020). Advances in salt tolerance molecular mechanism in tobacco plants. Hereditas, 157(1). doi:10.1186/s41065-020-00118-0 es_ES
dc.description.references Lutts, S., Majerus, V., & Kinet, J.-M. (1999). NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiologia Plantarum, 105(3), 450-458. doi:10.1034/j.1399-3054.1999.105309.x es_ES
dc.description.references Lacerda, C. F. de, Cambraia, J., Oliva, M. A., & Ruiz, H. A. (2003). Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress. Brazilian Journal of Plant Physiology, 15(2), 113-118. doi:10.1590/s1677-04202003000200007 es_ES
dc.description.references Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582 es_ES
dc.description.references DEMIRAL, T., & TURKAN, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi:10.1016/j.envexpbot.2004.03.017 es_ES
dc.description.references Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 es_ES
dc.description.references Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017 es_ES
dc.description.references Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161-175. doi:10.3109/07388550903524243 es_ES
dc.description.references Flowers, T. J., Munns, R., & Colmer, T. D. (2014). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 115(3), 419-431. doi:10.1093/aob/mcu217 es_ES
dc.description.references Li, W., Zhang, H., Zeng, Y., Xiang, L., Lei, Z., Huang, Q., … Cheng, Q. (2020). A Salt Tolerance Evaluation Method for Sunflower (Helianthus annuus L.) at the Seed Germination Stage. Scientific Reports, 10(1). doi:10.1038/s41598-020-67210-3 es_ES
dc.description.references LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 es_ES
dc.description.references Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 es_ES
dc.description.references Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 es_ES
dc.description.references Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 es_ES


This item appears in the following Collection(s)

Show simple item record