Omran, M., Fabritius, T., & Mattila, R. (2015). Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces. Powder Technology, 269, 7-14. doi:10.1016/j.powtec.2014.08.073
Omran, M., Fabritius, T., Heikkinen, E.-P., & Chen, G. (2017). Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating. Royal Society Open Science, 4(9), 170710. doi:10.1098/rsos.170710
Mouräo, M. B., Carvalho, Jr., I. P. de, & Takano, C. (2001). Carbothermic Reduction by Microwave Heating. ISIJ International, 41(Suppl), S27-S30. doi:10.2355/isijinternational.41.suppl_s27
[+]
Omran, M., Fabritius, T., & Mattila, R. (2015). Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces. Powder Technology, 269, 7-14. doi:10.1016/j.powtec.2014.08.073
Omran, M., Fabritius, T., Heikkinen, E.-P., & Chen, G. (2017). Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating. Royal Society Open Science, 4(9), 170710. doi:10.1098/rsos.170710
Mouräo, M. B., Carvalho, Jr., I. P. de, & Takano, C. (2001). Carbothermic Reduction by Microwave Heating. ISIJ International, 41(Suppl), S27-S30. doi:10.2355/isijinternational.41.suppl_s27
Standish, N., & Huang, W. (1991). Microwave application in carbothermic reduction of iron ores. ISIJ International, 31(3), 241-245. doi:10.2355/isijinternational.31.241
WANG, X., YANG, D., JU, S., PENG, J., & DUAN, X. (2013). Thermodynamics and kinetics of carbothermal reduction of zinc ferrite by microwave heating. Transactions of Nonferrous Metals Society of China, 23(12), 3808-3815. doi:10.1016/s1003-6326(13)62933-7
Ye, Q., Li, G., Peng, Z., Lee, J., Lin, X., Rao, M., … Jiang, T. (2019). Microwave-assisted self-reduction of composite briquettes of zinc ferrite and carbonaceous materials. Powder Technology, 342, 224-232. doi:10.1016/j.powtec.2018.09.091
Ye, Q., Peng, Z., Li, G., Lee, J., Liu, Y., Liu, M., … Jiang, T. (2019). Microwave-Assisted Reduction of Electric Arc Furnace Dust with Biochar: An Examination of Transition of Heating Mechanism. ACS Sustainable Chemistry & Engineering, 7(10), 9515-9524. doi:10.1021/acssuschemeng.9b00959
Ye, Q., Li, G., Peng, Z., Augustine, R., Pérez, M. D., Liu, Y., … Jiang, T. (2020). Microwave-assisted self-reduction of EAF dust-biochar composite briquettes for production of direct reduced iron. Powder Technology, 362, 781-789. doi:10.1016/j.powtec.2019.10.108
Ishizaki, K., Nagata, K., & Hayashi, T. (2006). Production of Pig Iron from Magnetite Ore–Coal Composite Pellets by Microwave Heating. ISIJ International, 46(10), 1403-1409. doi:10.2355/isijinternational.46.1403
LIU, C., ZHANG, L., PENG, J., LIU, B., XIA, H., GU, X., & SHI, Y. (2013). Effect of temperature on dielectric property and microwave heating behavior of low grade Panzhihua ilmenite ore. Transactions of Nonferrous Metals Society of China, 23(11), 3462-3469. doi:10.1016/s1003-6326(13)62889-7
Omran, M., Fabritius, T., Chen, G., & He, A. (2019). Microwave absorption properties of steelmaking dusts: effects of temperature on the dielectric constant (ε′) and loss factor (ε′′) at 1064 MHz and 2423 MHz. RSC Advances, 9(12), 6859-6870. doi:10.1039/c9ra00009g
ZHANG, L., MA, A., LIU, C., QU, W., PENG, J., LUO, Y., & ZUO, Y. (2014). Dielectric properties and temperature increase characteristics of zinc oxide dust from fuming furnace. Transactions of Nonferrous Metals Society of China, 24(12), 4004-4011. doi:10.1016/s1003-6326(14)63562-7
Al-harahsheh Mohammad, Kingman, S., Al-Makhadmah, L., & Hamilton, I. E. (2014). Microwave treatment of electric arc furnace dust with PVC: Dielectric characterization and pyrolysis-leaching. Journal of Hazardous Materials, 274, 87-97. doi:10.1016/j.jhazmat.2014.03.019
Garcia-Baños, B., Catalá-Civera, J., Peñaranda-Foix, F., Plaza-González, P., & Llorens-Vallés, G. (2016). In Situ Monitoring of Microwave Processing of Materials at High Temperatures through Dielectric Properties Measurement. Materials, 9(5), 349. doi:10.3390/ma9050349
García-Baños, B., Reinosa, J. J., Peñaranda-Foix, F. L., Fernández, J. F., & Catalá-Civera, J. M. (2019). Temperature Assessment Of Microwave-Enhanced Heating Processes. Scientific Reports, 9(1). doi:10.1038/s41598-019-47296-0
Catala-Civera, J. M., Canos, A. J., Plaza-Gonzalez, P., Gutierrez, J. D., Garcia-Banos, B., & Penaranda-Foix, F. L. (2015). Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2905-2914. doi:10.1109/tmtt.2015.2453263
Gutierrez-Cano, J. D., Plaza-Gonzalez, P., Canos, A. J., Garcia-Banos, B., Catala-Civera, J. M., & Penaranda-Foix, F. L. (2020). A New Stand-Alone Microwave Instrument for Measuring the Complex Permittivity of Materials at Microwave Frequencies. IEEE Transactions on Instrumentation and Measurement, 69(6), 3595-3605. doi:10.1109/tim.2019.2941038
Yucel, O., Demirci, F., Turan, A., & Alkan, M. (2013). Determination of Direct Reduction Conditions of Mill Scale. High Temperature Materials and Processes, 32(4), 405-412. doi:10.1515/htmp-2012-0167
Huang, Z., Wu, K., Hu, B., Peng, H., & Jiang, T. (2012). Non-Isothermal Kinetics of Reduction Reaction of Oxidized Pellet Under Microwave Irradiation. Journal of Iron and Steel Research International, 19(1), 1-4. doi:10.1016/s1006-706x(12)60038-7
He, G., Li, S., Yang, K., Liu, J., Liu, P., Zhang, L., & Peng, J. (2017). Dielectric Properties of Zinc Sulfide Concentrate during the Roasting at Microwave Frequencies. Minerals, 7(2), 31. doi:10.3390/min7020031
[-]