Mostrar el registro sencillo del ítem
dc.contributor.author | García-Baños, Beatriz | es_ES |
dc.contributor.author | Catalá Civera, José Manuel | es_ES |
dc.contributor.author | Sánchez-Marín, Juan Rafael | es_ES |
dc.contributor.author | Navarrete Algaba, Laura | es_ES |
dc.contributor.author | López-Buendía, Angel M. | es_ES |
dc.contributor.author | Schmidt, Lukas | es_ES |
dc.date.accessioned | 2021-05-28T03:34:20Z | |
dc.date.available | 2021-05-28T03:34:20Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166914 | |
dc.description.abstract | [EN] In this work, the carbothermic reduction of iron- and zinc-bearing products is studied through in situ microwave heating, dielectric properties monitoring, and mass spectrometry up to high temperatures (1000 degrees C). The results are correlated to the information provided by conventional analysis techniques such as differential scanning calorimetry (DSC) and thermogravimetry (TG). This combination allows a detailed study of seven different process stages with an accurate determination of the reaction temperatures, providing new evidence about the particular conditions of this microwave-driven reduction process. The presented results suggest that molecular vibrations imposed by the microwave field are presumably the reason for reactions taking place at lower temperatures than those observed in the conventional process. This work also explores the influence of other parameters, such as the apparent density or the amount of carbonaceous material, on the resulting dielectric properties, providing useful information for the development of a potential microwave industrial application in the metallurgy field. | es_ES |
dc.description.sponsorship | This research was funded by the European Union's Horizon 2020 research and innovation programme under Grant Agreement number 820783. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Metals | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Microwave heating | es_ES |
dc.subject | Dielectric properties | es_ES |
dc.subject | Carbothermic reduction | es_ES |
dc.subject | Iron oxides | es_ES |
dc.subject | Zinc ferrite | es_ES |
dc.subject | Mass spectrometry | es_ES |
dc.subject | Iron and zinc recovery | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | High Temperature Dielectric Properties of Iron- and Zinc-Bearing Products during Carbothermic Reduction by Microwave Heating | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/met10050693 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/820783/EU/Development of an Efficient Microwave System for Material Transformation in energy INtensive processes for an improved Yield/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | García-Baños, B.; Catalá Civera, JM.; Sánchez-Marín, JR.; Navarrete Algaba, L.; López-Buendía, AM.; Schmidt, L. (2020). High Temperature Dielectric Properties of Iron- and Zinc-Bearing Products during Carbothermic Reduction by Microwave Heating. Metals. 10(5):1-15. https://doi.org/10.3390/met10050693 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/met10050693 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2075-4701 | es_ES |
dc.relation.pasarela | S\418563 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Omran, M., Fabritius, T., & Mattila, R. (2015). Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces. Powder Technology, 269, 7-14. doi:10.1016/j.powtec.2014.08.073 | es_ES |
dc.description.references | Omran, M., Fabritius, T., Heikkinen, E.-P., & Chen, G. (2017). Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating. Royal Society Open Science, 4(9), 170710. doi:10.1098/rsos.170710 | es_ES |
dc.description.references | Mouräo, M. B., Carvalho, Jr., I. P. de, & Takano, C. (2001). Carbothermic Reduction by Microwave Heating. ISIJ International, 41(Suppl), S27-S30. doi:10.2355/isijinternational.41.suppl_s27 | es_ES |
dc.description.references | Standish, N., & Huang, W. (1991). Microwave application in carbothermic reduction of iron ores. ISIJ International, 31(3), 241-245. doi:10.2355/isijinternational.31.241 | es_ES |
dc.description.references | WANG, X., YANG, D., JU, S., PENG, J., & DUAN, X. (2013). Thermodynamics and kinetics of carbothermal reduction of zinc ferrite by microwave heating. Transactions of Nonferrous Metals Society of China, 23(12), 3808-3815. doi:10.1016/s1003-6326(13)62933-7 | es_ES |
dc.description.references | Ye, Q., Li, G., Peng, Z., Lee, J., Lin, X., Rao, M., … Jiang, T. (2019). Microwave-assisted self-reduction of composite briquettes of zinc ferrite and carbonaceous materials. Powder Technology, 342, 224-232. doi:10.1016/j.powtec.2018.09.091 | es_ES |
dc.description.references | Ye, Q., Peng, Z., Li, G., Lee, J., Liu, Y., Liu, M., … Jiang, T. (2019). Microwave-Assisted Reduction of Electric Arc Furnace Dust with Biochar: An Examination of Transition of Heating Mechanism. ACS Sustainable Chemistry & Engineering, 7(10), 9515-9524. doi:10.1021/acssuschemeng.9b00959 | es_ES |
dc.description.references | Ye, Q., Li, G., Peng, Z., Augustine, R., Pérez, M. D., Liu, Y., … Jiang, T. (2020). Microwave-assisted self-reduction of EAF dust-biochar composite briquettes for production of direct reduced iron. Powder Technology, 362, 781-789. doi:10.1016/j.powtec.2019.10.108 | es_ES |
dc.description.references | Ishizaki, K., Nagata, K., & Hayashi, T. (2006). Production of Pig Iron from Magnetite Ore–Coal Composite Pellets by Microwave Heating. ISIJ International, 46(10), 1403-1409. doi:10.2355/isijinternational.46.1403 | es_ES |
dc.description.references | LIU, C., ZHANG, L., PENG, J., LIU, B., XIA, H., GU, X., & SHI, Y. (2013). Effect of temperature on dielectric property and microwave heating behavior of low grade Panzhihua ilmenite ore. Transactions of Nonferrous Metals Society of China, 23(11), 3462-3469. doi:10.1016/s1003-6326(13)62889-7 | es_ES |
dc.description.references | Omran, M., Fabritius, T., Chen, G., & He, A. (2019). Microwave absorption properties of steelmaking dusts: effects of temperature on the dielectric constant (ε′) and loss factor (ε′′) at 1064 MHz and 2423 MHz. RSC Advances, 9(12), 6859-6870. doi:10.1039/c9ra00009g | es_ES |
dc.description.references | ZHANG, L., MA, A., LIU, C., QU, W., PENG, J., LUO, Y., & ZUO, Y. (2014). Dielectric properties and temperature increase characteristics of zinc oxide dust from fuming furnace. Transactions of Nonferrous Metals Society of China, 24(12), 4004-4011. doi:10.1016/s1003-6326(14)63562-7 | es_ES |
dc.description.references | Al-harahsheh Mohammad, Kingman, S., Al-Makhadmah, L., & Hamilton, I. E. (2014). Microwave treatment of electric arc furnace dust with PVC: Dielectric characterization and pyrolysis-leaching. Journal of Hazardous Materials, 274, 87-97. doi:10.1016/j.jhazmat.2014.03.019 | es_ES |
dc.description.references | Garcia-Baños, B., Catalá-Civera, J., Peñaranda-Foix, F., Plaza-González, P., & Llorens-Vallés, G. (2016). In Situ Monitoring of Microwave Processing of Materials at High Temperatures through Dielectric Properties Measurement. Materials, 9(5), 349. doi:10.3390/ma9050349 | es_ES |
dc.description.references | García-Baños, B., Reinosa, J. J., Peñaranda-Foix, F. L., Fernández, J. F., & Catalá-Civera, J. M. (2019). Temperature Assessment Of Microwave-Enhanced Heating Processes. Scientific Reports, 9(1). doi:10.1038/s41598-019-47296-0 | es_ES |
dc.description.references | Catala-Civera, J. M., Canos, A. J., Plaza-Gonzalez, P., Gutierrez, J. D., Garcia-Banos, B., & Penaranda-Foix, F. L. (2015). Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2905-2914. doi:10.1109/tmtt.2015.2453263 | es_ES |
dc.description.references | Gutierrez-Cano, J. D., Plaza-Gonzalez, P., Canos, A. J., Garcia-Banos, B., Catala-Civera, J. M., & Penaranda-Foix, F. L. (2020). A New Stand-Alone Microwave Instrument for Measuring the Complex Permittivity of Materials at Microwave Frequencies. IEEE Transactions on Instrumentation and Measurement, 69(6), 3595-3605. doi:10.1109/tim.2019.2941038 | es_ES |
dc.description.references | Yucel, O., Demirci, F., Turan, A., & Alkan, M. (2013). Determination of Direct Reduction Conditions of Mill Scale. High Temperature Materials and Processes, 32(4), 405-412. doi:10.1515/htmp-2012-0167 | es_ES |
dc.description.references | Huang, Z., Wu, K., Hu, B., Peng, H., & Jiang, T. (2012). Non-Isothermal Kinetics of Reduction Reaction of Oxidized Pellet Under Microwave Irradiation. Journal of Iron and Steel Research International, 19(1), 1-4. doi:10.1016/s1006-706x(12)60038-7 | es_ES |
dc.description.references | He, G., Li, S., Yang, K., Liu, J., Liu, P., Zhang, L., & Peng, J. (2017). Dielectric Properties of Zinc Sulfide Concentrate during the Roasting at Microwave Frequencies. Minerals, 7(2), 31. doi:10.3390/min7020031 | es_ES |