- -

High Temperature Dielectric Properties of Iron- and Zinc-Bearing Products during Carbothermic Reduction by Microwave Heating

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High Temperature Dielectric Properties of Iron- and Zinc-Bearing Products during Carbothermic Reduction by Microwave Heating

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Baños, Beatriz es_ES
dc.contributor.author Catalá Civera, José Manuel es_ES
dc.contributor.author Sánchez-Marín, Juan Rafael es_ES
dc.contributor.author Navarrete Algaba, Laura es_ES
dc.contributor.author López-Buendía, Angel M. es_ES
dc.contributor.author Schmidt, Lukas es_ES
dc.date.accessioned 2021-05-28T03:34:20Z
dc.date.available 2021-05-28T03:34:20Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166914
dc.description.abstract [EN] In this work, the carbothermic reduction of iron- and zinc-bearing products is studied through in situ microwave heating, dielectric properties monitoring, and mass spectrometry up to high temperatures (1000 degrees C). The results are correlated to the information provided by conventional analysis techniques such as differential scanning calorimetry (DSC) and thermogravimetry (TG). This combination allows a detailed study of seven different process stages with an accurate determination of the reaction temperatures, providing new evidence about the particular conditions of this microwave-driven reduction process. The presented results suggest that molecular vibrations imposed by the microwave field are presumably the reason for reactions taking place at lower temperatures than those observed in the conventional process. This work also explores the influence of other parameters, such as the apparent density or the amount of carbonaceous material, on the resulting dielectric properties, providing useful information for the development of a potential microwave industrial application in the metallurgy field. es_ES
dc.description.sponsorship This research was funded by the European Union's Horizon 2020 research and innovation programme under Grant Agreement number 820783. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Metals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Microwave heating es_ES
dc.subject Dielectric properties es_ES
dc.subject Carbothermic reduction es_ES
dc.subject Iron oxides es_ES
dc.subject Zinc ferrite es_ES
dc.subject Mass spectrometry es_ES
dc.subject Iron and zinc recovery es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title High Temperature Dielectric Properties of Iron- and Zinc-Bearing Products during Carbothermic Reduction by Microwave Heating es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/met10050693 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/820783/EU/Development of an Efficient Microwave System for Material Transformation in  energy INtensive processes for an improved Yield/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation García-Baños, B.; Catalá Civera, JM.; Sánchez-Marín, JR.; Navarrete Algaba, L.; López-Buendía, AM.; Schmidt, L. (2020). High Temperature Dielectric Properties of Iron- and Zinc-Bearing Products during Carbothermic Reduction by Microwave Heating. Metals. 10(5):1-15. https://doi.org/10.3390/met10050693 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/met10050693 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2075-4701 es_ES
dc.relation.pasarela S\418563 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Omran, M., Fabritius, T., & Mattila, R. (2015). Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces. Powder Technology, 269, 7-14. doi:10.1016/j.powtec.2014.08.073 es_ES
dc.description.references Omran, M., Fabritius, T., Heikkinen, E.-P., & Chen, G. (2017). Dielectric properties and carbothermic reduction of zinc oxide and zinc ferrite by microwave heating. Royal Society Open Science, 4(9), 170710. doi:10.1098/rsos.170710 es_ES
dc.description.references Mouräo, M. B., Carvalho, Jr., I. P. de, & Takano, C. (2001). Carbothermic Reduction by Microwave Heating. ISIJ International, 41(Suppl), S27-S30. doi:10.2355/isijinternational.41.suppl_s27 es_ES
dc.description.references Standish, N., & Huang, W. (1991). Microwave application in carbothermic reduction of iron ores. ISIJ International, 31(3), 241-245. doi:10.2355/isijinternational.31.241 es_ES
dc.description.references WANG, X., YANG, D., JU, S., PENG, J., & DUAN, X. (2013). Thermodynamics and kinetics of carbothermal reduction of zinc ferrite by microwave heating. Transactions of Nonferrous Metals Society of China, 23(12), 3808-3815. doi:10.1016/s1003-6326(13)62933-7 es_ES
dc.description.references Ye, Q., Li, G., Peng, Z., Lee, J., Lin, X., Rao, M., … Jiang, T. (2019). Microwave-assisted self-reduction of composite briquettes of zinc ferrite and carbonaceous materials. Powder Technology, 342, 224-232. doi:10.1016/j.powtec.2018.09.091 es_ES
dc.description.references Ye, Q., Peng, Z., Li, G., Lee, J., Liu, Y., Liu, M., … Jiang, T. (2019). Microwave-Assisted Reduction of Electric Arc Furnace Dust with Biochar: An Examination of Transition of Heating Mechanism. ACS Sustainable Chemistry & Engineering, 7(10), 9515-9524. doi:10.1021/acssuschemeng.9b00959 es_ES
dc.description.references Ye, Q., Li, G., Peng, Z., Augustine, R., Pérez, M. D., Liu, Y., … Jiang, T. (2020). Microwave-assisted self-reduction of EAF dust-biochar composite briquettes for production of direct reduced iron. Powder Technology, 362, 781-789. doi:10.1016/j.powtec.2019.10.108 es_ES
dc.description.references Ishizaki, K., Nagata, K., & Hayashi, T. (2006). Production of Pig Iron from Magnetite Ore–Coal Composite Pellets by Microwave Heating. ISIJ International, 46(10), 1403-1409. doi:10.2355/isijinternational.46.1403 es_ES
dc.description.references LIU, C., ZHANG, L., PENG, J., LIU, B., XIA, H., GU, X., & SHI, Y. (2013). Effect of temperature on dielectric property and microwave heating behavior of low grade Panzhihua ilmenite ore. Transactions of Nonferrous Metals Society of China, 23(11), 3462-3469. doi:10.1016/s1003-6326(13)62889-7 es_ES
dc.description.references Omran, M., Fabritius, T., Chen, G., & He, A. (2019). Microwave absorption properties of steelmaking dusts: effects of temperature on the dielectric constant (ε′) and loss factor (ε′′) at 1064 MHz and 2423 MHz. RSC Advances, 9(12), 6859-6870. doi:10.1039/c9ra00009g es_ES
dc.description.references ZHANG, L., MA, A., LIU, C., QU, W., PENG, J., LUO, Y., & ZUO, Y. (2014). Dielectric properties and temperature increase characteristics of zinc oxide dust from fuming furnace. Transactions of Nonferrous Metals Society of China, 24(12), 4004-4011. doi:10.1016/s1003-6326(14)63562-7 es_ES
dc.description.references Al-harahsheh Mohammad, Kingman, S., Al-Makhadmah, L., & Hamilton, I. E. (2014). Microwave treatment of electric arc furnace dust with PVC: Dielectric characterization and pyrolysis-leaching. Journal of Hazardous Materials, 274, 87-97. doi:10.1016/j.jhazmat.2014.03.019 es_ES
dc.description.references Garcia-Baños, B., Catalá-Civera, J., Peñaranda-Foix, F., Plaza-González, P., & Llorens-Vallés, G. (2016). In Situ Monitoring of Microwave Processing of Materials at High Temperatures through Dielectric Properties Measurement. Materials, 9(5), 349. doi:10.3390/ma9050349 es_ES
dc.description.references García-Baños, B., Reinosa, J. J., Peñaranda-Foix, F. L., Fernández, J. F., & Catalá-Civera, J. M. (2019). Temperature Assessment Of Microwave-Enhanced Heating Processes. Scientific Reports, 9(1). doi:10.1038/s41598-019-47296-0 es_ES
dc.description.references Catala-Civera, J. M., Canos, A. J., Plaza-Gonzalez, P., Gutierrez, J. D., Garcia-Banos, B., & Penaranda-Foix, F. L. (2015). Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2905-2914. doi:10.1109/tmtt.2015.2453263 es_ES
dc.description.references Gutierrez-Cano, J. D., Plaza-Gonzalez, P., Canos, A. J., Garcia-Banos, B., Catala-Civera, J. M., & Penaranda-Foix, F. L. (2020). A New Stand-Alone Microwave Instrument for Measuring the Complex Permittivity of Materials at Microwave Frequencies. IEEE Transactions on Instrumentation and Measurement, 69(6), 3595-3605. doi:10.1109/tim.2019.2941038 es_ES
dc.description.references Yucel, O., Demirci, F., Turan, A., & Alkan, M. (2013). Determination of Direct Reduction Conditions of Mill Scale. High Temperature Materials and Processes, 32(4), 405-412. doi:10.1515/htmp-2012-0167 es_ES
dc.description.references Huang, Z., Wu, K., Hu, B., Peng, H., & Jiang, T. (2012). Non-Isothermal Kinetics of Reduction Reaction of Oxidized Pellet Under Microwave Irradiation. Journal of Iron and Steel Research International, 19(1), 1-4. doi:10.1016/s1006-706x(12)60038-7 es_ES
dc.description.references He, G., Li, S., Yang, K., Liu, J., Liu, P., Zhang, L., & Peng, J. (2017). Dielectric Properties of Zinc Sulfide Concentrate during the Roasting at Microwave Frequencies. Minerals, 7(2), 31. doi:10.3390/min7020031 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem