Mostrar el registro sencillo del ítem
dc.contributor.author | Todea (Morar), Irina Maria | es_ES |
dc.contributor.author | González-Orenga, Sara | es_ES |
dc.contributor.author | Boscaiu, Monica | es_ES |
dc.contributor.author | Plazas Ávila, María de la O | es_ES |
dc.contributor.author | Sestras, Adriana F. | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Vicente, Oscar | es_ES |
dc.contributor.author | Sestras, Radu E. | es_ES |
dc.date.accessioned | 2021-05-28T03:34:58Z | |
dc.date.available | 2021-05-28T03:34:58Z | |
dc.date.issued | 2020-04-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166922 | |
dc.description.abstract | [EN] Forest ecosystems are frequently exposed to abiotic stress, which adversely affects their growth, resistance and survival. For silver fir (Abies alba), the physiological and biochemical responses to water and salt stress have not been extensively studied. Responses of one-year-old seedlings to a 30-day water stress (withholding irrigation) or salt stress (100, 200 and 300 mM NaCl) treatments were analysed by determining stress-induced changes in growth parameters and different biochemical markers: accumulation of ions, different osmolytes and malondialdehyde (MDA, an oxidative stress biomarker), in the seedlings, and activation of enzymatic and non-enzymatic antioxidant systems. Both salt and water stress caused growth inhibition. The results obtained indicated that the most relevant responses to drought are based on the accumulation of soluble carbohydrates as osmolytes/osmoprotectants. Responses to high salinity, on the other hand, include the active transport of Na+, Cl¿ and Ca2+ to the needles, the maintenance of relatively high K+/Na+ ratios and the accumulation of proline and soluble sugars for osmotic balance. Interestingly, relatively high Na+ concentrations were measured in the needles of A. alba seedlings at low external salinity, suggesting that Na+ can contribute to osmotic adjustment as a `cheap¿ osmoticum, and its accumulation may represent a constitutive mechanism of defence against stress. These responses appear to be efficient enough to avoid the generation of high levels of oxidative stress, in agreement with the small increase in MDA contents and the relatively weak activation of the tested antioxidant systems. | es_ES |
dc.description.sponsorship | This research was partially funded by Doctoral School from the University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, granted to I.M.T. The publication was supported by funds from the National Research Development Projects to finance excellence (PFE)-37/2018-2020 granted by the Romanian Ministry of Research and Innovation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Forests | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Abiotic stress | es_ES |
dc.subject | Antioxidants | es_ES |
dc.subject | Drought | es_ES |
dc.subject | Ion homeostasis | es_ES |
dc.subject | Osmolytes | es_ES |
dc.subject | Salinity | es_ES |
dc.subject | Silver fir | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/f11040395 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCI//37%2F2018-2020/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Todea (morar), IM.; González-Orenga, S.; Boscaiu, M.; Plazas Ávila, MDLO.; Sestras, AF.; Prohens Tomás, J.; Vicente, O.... (2020). Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings. Forests. 11(4):1-21. https://doi.org/10.3390/f11040395 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/f11040395 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1999-4907 | es_ES |
dc.relation.pasarela | S\411699 | es_ES |
dc.contributor.funder | Ministry of Research and Innovation, Rumanía | es_ES |
dc.contributor.funder | University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca | es_ES |
dc.description.references | Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. doi:10.3390/plants8020034 | es_ES |
dc.description.references | Zhou, S.-X., Prentice, I. C., & Medlyn, B. E. (2019). Bridging Drought Experiment and Modeling: Representing the Differential Sensitivities of Leaf Gas Exchange to Drought. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01965 | es_ES |
dc.description.references | Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978 | es_ES |
dc.description.references | Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A., Kourgialas, N. N., Varouchakis, A. E., Karatzas, G. P., & Ritsema, C. J. (2016). The threat of soil salinity: A European scale review. Science of The Total Environment, 573, 727-739. doi:10.1016/j.scitotenv.2016.08.177 | es_ES |
dc.description.references | Cuevas, J., Daliakopoulos, I. N., del Moral, F., Hueso, J. J., & Tsanis, I. K. (2019). A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy, 9(6), 295. doi:10.3390/agronomy9060295 | es_ES |
dc.description.references | In Proceedings of the 5th Assessment Report, WGII, Climate Change 2014: Impacts, Adaptation, and Vulnerability http://www.ipcc.ch/report/ar5/wg2/ | es_ES |
dc.description.references | Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410 | es_ES |
dc.description.references | Tinner, W., Colombaroli, D., Heiri, O., Henne, P. D., Steinacher, M., Untenecker, J., … Valsecchi, V. (2013). The past ecology ofAbies albaprovides new perspectives on future responses of silver fir forests to global warming. Ecological Monographs, 83(4), 419-439. doi:10.1890/12-2231.1 | es_ES |
dc.description.references | Vicario, F., Vendramin, G. G., Rossi, P., Liò, P., & Giannini, R. (1995). Allozyme, chloroplast DNA and RAPD markers for determining genetic relationships between Abies alba and the relic population of Abies nebrodensis. Theoretical and Applied Genetics, 90(7-8), 1012-1018. doi:10.1007/bf00222915 | es_ES |
dc.description.references | Muller, S. D., Nakagawa, T., De Beaulieu, J.-L., Court-Picon, M., Carcaillet, C., Miramont, C., … Bruneton, H. (2007). Post-glacial migration of silver fir (Abies alba Mill.) in the south-western Alps. Journal of Biogeography, 34(5), 876-899. doi:10.1111/j.1365-2699.2006.01665.x | es_ES |
dc.description.references | Ruosch, M., Spahni, R., Joos, F., Henne, P. D., van der Knaap, W. O., & Tinner, W. (2016). Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations. Global Change Biology, 22(2), 727-740. doi:10.1111/gcb.13075 | es_ES |
dc.description.references | Dobrowolska, D., Bončina, A., & Klumpp, R. (2017). Ecology and silviculture of silver fir (Abies alba Mill.): a review. Journal of Forest Research, 22(6), 326-335. doi:10.1080/13416979.2017.1386021 | es_ES |
dc.description.references | Flückiger, W., & Braun, S. (1981). Perspectives of reducing the deleterious effect of de-icing salt upon vegetation. Plant and Soil, 63(3), 527-529. doi:10.1007/bf02370056 | es_ES |
dc.description.references | Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419 | es_ES |
dc.description.references | Cailleret, M., Nourtier, M., Amm, A., Durand-Gillmann, M., & Davi, H. (2013). Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Annals of Forest Science, 71(6), 643-657. doi:10.1007/s13595-013-0265-0 | es_ES |
dc.description.references | Nourtier, M., Chanzy, A., Cailleret, M., Yingge, X., Huc, R., & Davi, H. (2012). Transpiration of silver Fir (Abies alba mill.) during and after drought in relation to soil properties in a Mediterranean mountain area. Annals of Forest Science, 71(6), 683-695. doi:10.1007/s13595-012-0229-9 | es_ES |
dc.description.references | Gazol, A., Camarero, J. J., Gutiérrez, E., Popa, I., Andreu-Hayles, L., Motta, R., … Carrer, M. (2015). Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography, 42(6), 1150-1162. doi:10.1111/jbi.12512 | es_ES |
dc.description.references | TODEA (MORAR), I. M., GONZÁLEZ-ORENGA, S., PLAZAS, M., SESTRAS, A. F., PROHENS, J., VICENTE, O., … BOSCAIU, M. (2019). Screening for Salt and Water Stress Tolerance in Fir (Abies alba) Populations. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1063-1072. doi:10.15835/nbha47411348 | es_ES |
dc.description.references | ZW, S., LK, R., JW, F., Li, Q., KJ, W., MM, G., … XN, L. (2016). Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance . Plant, Soil and Environment, 62(No. 11), 515-521. doi:10.17221/529/2016-pse | es_ES |
dc.description.references | Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029 | es_ES |
dc.description.references | LUGO-CRUZ, E., ZAVALA-GARCÍA, F., PICÓN-RUBIO, F. J., URÍAS-ORONA, V., RODRÍGUEZ-FUENTES, H., VIDALES-CONTRERAS, J. A., … NIÑO-MEDINA, G. (2016). Water Stress Effect on Cell Wall Components of Maize (Zea mays) Bran. Notulae Scientia Biologicae, 8(1), 81-84. doi:10.15835/nsb819710 | es_ES |
dc.description.references | Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A. A. (2008). The Enigmatic LEA Proteins and Other Hydrophilins. Plant Physiology, 148(1), 6-24. doi:10.1104/pp.108.120725 | es_ES |
dc.description.references | Zhang, D., Tong, J., He, X., Xu, Z., Xu, L., Wei, P., … Shao, H. (2016). A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01237 | es_ES |
dc.description.references | FARDUS, J., MATIN, M. A., HASANUZZAMAN, M., HOSSAIN, M. S., NATH, S. D., HOSSAIN, M. A., … HASANUZZAMAN, M. (2017). Exogenous Salicylic Acid-Mediated Physiological Responses and Improvement in Yield by Modulating Antioxidant Defense System of Wheat under Salinity. Notulae Scientia Biologicae, 9(2), 219-232. doi:10.15835/nsb929998 | es_ES |
dc.description.references | Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x | es_ES |
dc.description.references | Griffith, M., & Yaish, M. W. F. (2004). Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science, 9(8), 399-405. doi:10.1016/j.tplants.2004.06.007 | es_ES |
dc.description.references | Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi:10.1093/aob/mcu239 | es_ES |
dc.description.references | Chen, T. H. H., & Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 13(9), 499-505. doi:10.1016/j.tplants.2008.06.007 | es_ES |
dc.description.references | Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 | es_ES |
dc.description.references | ESFANDIARI, E., & GOHARI, G. (2017). Response of ROS-Scavenging Systems to Salinity Stress in Two Different Wheat (Triticum aestivum L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 287-291. doi:10.15835/nbha45110682 | es_ES |
dc.description.references | Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 | es_ES |
dc.description.references | Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481-489. doi:10.1111/j.1399-3054.2008.01090.x | es_ES |
dc.description.references | LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 | es_ES |
dc.description.references | Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x | es_ES |
dc.description.references | Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 | es_ES |
dc.description.references | DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 | es_ES |
dc.description.references | Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 | es_ES |
dc.description.references | Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 | es_ES |
dc.description.references | Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 | es_ES |
dc.description.references | Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 | es_ES |
dc.description.references | Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 | es_ES |
dc.description.references | Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1 | es_ES |
dc.description.references | Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3 | es_ES |
dc.description.references | Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351 | es_ES |
dc.description.references | Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468 | es_ES |
dc.description.references | Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 | es_ES |
dc.description.references | Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 | es_ES |
dc.description.references | Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 | es_ES |
dc.description.references | GANANÇA, J. F. T., FREITAS, J. G. R., NÓBREGA, H. G. M., RODRIGUES, V., ANTUNES, G., GOUVEIA, C. S. S., … LEBOT, V. (2018). Screening for Drought Tolerance in Thirty Three Taro Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 65-74. doi:10.15835/nbha46110950 | es_ES |
dc.description.references | Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2017). Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees, 31(5), 1479-1490. doi:10.1007/s00468-017-1563-1 | es_ES |
dc.description.references | Melo, H. F. de, Souza, E. R. de, & Cunha, J. C. (2017). Fluorescence of chlorophyll a and photosynthetic pigments in Atriplex nummularia under abiotic stresses. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(4), 232-237. doi:10.1590/1807-1929/agriambi.v21n4p232-237 | es_ES |
dc.description.references | Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017 | es_ES |
dc.description.references | Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99. doi:10.1016/j.scienta.2004.04.009 | es_ES |
dc.description.references | Plesa, I. M., Al Hassan, M., González-Orenga, S., Sestras, A. F., Vicente, O., Prohens, J., … Sestras, R. E. (2019). Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances. Forests, 10(6), 511. doi:10.3390/f10060511 | es_ES |
dc.description.references | Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops – what is the cost? New Phytologist, 208(3), 668-673. doi:10.1111/nph.13519 | es_ES |
dc.description.references | Tang, X., Mu, X., Shao, H., Wang, H., & Brestic, M. (2014). Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology, 35(4), 425-437. doi:10.3109/07388551.2014.889080 | es_ES |
dc.description.references | MF, G., Li, N., TY, S., XH, L., Brestič, M., HB, S., … rki, S. (2016). Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water . Plant, Soil and Environment, 62(No. 7), 314-320. doi:10.17221/771/2015-pse | es_ES |
dc.description.references | Bogemans, J., Neirinckx, L., & Stassart, J. M. (1989). Effect of deicing chloride salts on ion accumulation in spruce (Picea abies (L.) sp.). Plant and Soil, 113(1), 3-11. doi:10.1007/bf02181915 | es_ES |
dc.description.references | RAVEN, J. A. (1985). TANSLEY REVIEW No. 2. New Phytologist, 101(1), 25-77. doi:10.1111/j.1469-8137.1985.tb02816.x | es_ES |
dc.description.references | Manishankar, P., Wang, N., Köster, P., Alatar, A. A., & Kudla, J. (2018). Calcium signaling during salt stress and in the regulation of ion homeostasis. Journal of Experimental Botany, 69(17), 4215-4226. doi:10.1093/jxb/ery201 | es_ES |
dc.description.references | Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053 | es_ES |
dc.description.references | Rodrı́guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. doi:10.1016/s0304-4157(99)00013-1 | es_ES |
dc.description.references | Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106 | es_ES |
dc.description.references | KAVI KISHOR, P. B., & SREENIVASULU, N. (2013). Is proline accumulationper secorrelated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment, 37(2), 300-311. doi:10.1111/pce.12157 | es_ES |
dc.description.references | Ditmarova, L., Kurjak, D., Palmroth, S., Kmet, J., & Strelcova, K. (2009). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, 30(2), 205-213. doi:10.1093/treephys/tpp116 | es_ES |
dc.description.references | Taïbi, K., del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., Pla, D., … Mulet, J. M. (2017). Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01202 | es_ES |
dc.description.references | Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7(11), 1456-1466. doi:10.4161/psb.21949 | es_ES |
dc.description.references | Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 | es_ES |
dc.description.references | Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi:10.1016/s0168-9452(01)00452-6 | es_ES |
dc.description.references | Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161-175. doi:10.3109/07388550903524243 | es_ES |
dc.description.references | Chan, Z., Yokawa, K., Kim, W.-Y., & Song, C.-P. (2016). Editorial: ROS Regulation during Plant Abiotic Stress Responses. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01536 | es_ES |
dc.description.references | Shi, Q., & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63(1-3), 317-326. doi:10.1016/j.envexpbot.2007.11.003 | es_ES |
dc.description.references | Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. doi:10.1016/j.biotechadv.2008.09.003 | es_ES |
dc.description.references | Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00800 | es_ES |
dc.description.references | Tuna, A. L., Kaya, C., Dikilitas, M., & Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62(1), 1-9. doi:10.1016/j.envexpbot.2007.06.007 | es_ES |
dc.description.references | Harinasut, P., Poonsopa, D., Roengmongkol, K., & Charoensataporn, R. (2003). ScienceAsia, 29(2), 109. doi:10.2306/scienceasia1513-1874.2003.29.109 | es_ES |
dc.description.references | Ashraf, M., & Ali, Q. (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63(1-3), 266-273. doi:10.1016/j.envexpbot.2007.11.008 | es_ES |
dc.description.references | Yang, Y., Han, C., Liu, Q., Lin, B., & Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum, 30(4), 433-440. doi:10.1007/s11738-008-0140-z | es_ES |
dc.description.references | Ben Amor, N., Ben Hamed, K., Debez, A., Grignon, C., & Abdelly, C. (2005). Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science, 168(4), 889-899. doi:10.1016/j.plantsci.2004.11.002 | es_ES |
dc.description.references | Kangasjärvi, S., Lepistö, A., Hännikäinen, K., Piippo, M., Luomala, E.-M., Aro, E.-M., & Rintamäki, E. (2008). Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochemical Journal, 412(2), 275-285. doi:10.1042/bj20080030 | es_ES |
dc.description.references | Lee, D. H., & Lee, C. B. (2000). Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Science, 159(1), 75-85. doi:10.1016/s0168-9452(00)00326-5 | es_ES |
dc.description.references | Keleş, Y., & Öncel, I. (2002). Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Science, 163(4), 783-790. doi:10.1016/s0168-9452(02)00213-3 | es_ES |
dc.description.references | Vital, S. A., Fowler, R. W., Virgen, A., Gossett, D. R., Banks, S. W., & Rodriguez, J. (2008). Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environmental and Experimental Botany, 62(1), 60-68. doi:10.1016/j.envexpbot.2007.07.006 | es_ES |
dc.description.references | Naya, L., Ladrera, R., Ramos, J., González, E. M., Arrese-Igor, C., Minchin, F. R., & Becana, M. (2007). The Response of Carbon Metabolism and Antioxidant Defenses of Alfalfa Nodules to Drought Stress and to the Subsequent Recovery of Plants. Plant Physiology, 144(2), 1104-1114. doi:10.1104/pp.107.099648 | es_ES |
dc.description.references | Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 24(13), 2452. doi:10.3390/molecules24132452 | es_ES |
dc.description.references | KEBBAS, S., BENSEDDIK, T., MAKHLOUF, H., & AID, F. (2018). Physiological and Biochemical Behaviour of Gleditsia triacanthos L. Young Seedlings Under Drought Stress Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 585-592. doi:10.15835/nbha46211064 | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |