- -

Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Todea (Morar), Irina Maria es_ES
dc.contributor.author González-Orenga, Sara es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.contributor.author Plazas Ávila, María de la O es_ES
dc.contributor.author Sestras, Adriana F. es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.contributor.author Sestras, Radu E. es_ES
dc.date.accessioned 2021-05-28T03:34:58Z
dc.date.available 2021-05-28T03:34:58Z
dc.date.issued 2020-04-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166922
dc.description.abstract [EN] Forest ecosystems are frequently exposed to abiotic stress, which adversely affects their growth, resistance and survival. For silver fir (Abies alba), the physiological and biochemical responses to water and salt stress have not been extensively studied. Responses of one-year-old seedlings to a 30-day water stress (withholding irrigation) or salt stress (100, 200 and 300 mM NaCl) treatments were analysed by determining stress-induced changes in growth parameters and different biochemical markers: accumulation of ions, different osmolytes and malondialdehyde (MDA, an oxidative stress biomarker), in the seedlings, and activation of enzymatic and non-enzymatic antioxidant systems. Both salt and water stress caused growth inhibition. The results obtained indicated that the most relevant responses to drought are based on the accumulation of soluble carbohydrates as osmolytes/osmoprotectants. Responses to high salinity, on the other hand, include the active transport of Na+, Cl¿ and Ca2+ to the needles, the maintenance of relatively high K+/Na+ ratios and the accumulation of proline and soluble sugars for osmotic balance. Interestingly, relatively high Na+ concentrations were measured in the needles of A. alba seedlings at low external salinity, suggesting that Na+ can contribute to osmotic adjustment as a `cheap¿ osmoticum, and its accumulation may represent a constitutive mechanism of defence against stress. These responses appear to be efficient enough to avoid the generation of high levels of oxidative stress, in agreement with the small increase in MDA contents and the relatively weak activation of the tested antioxidant systems. es_ES
dc.description.sponsorship This research was partially funded by Doctoral School from the University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, granted to I.M.T. The publication was supported by funds from the National Research Development Projects to finance excellence (PFE)-37/2018-2020 granted by the Romanian Ministry of Research and Innovation. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Forests es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Abiotic stress es_ES
dc.subject Antioxidants es_ES
dc.subject Drought es_ES
dc.subject Ion homeostasis es_ES
dc.subject Osmolytes es_ES
dc.subject Salinity es_ES
dc.subject Silver fir es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/f11040395 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCI//37%2F2018-2020/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Todea (morar), IM.; González-Orenga, S.; Boscaiu, M.; Plazas Ávila, MDLO.; Sestras, AF.; Prohens Tomás, J.; Vicente, O.... (2020). Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings. Forests. 11(4):1-21. https://doi.org/10.3390/f11040395 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/f11040395 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1999-4907 es_ES
dc.relation.pasarela S\411699 es_ES
dc.contributor.funder Ministry of Research and Innovation, Rumanía es_ES
dc.contributor.funder University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca es_ES
dc.description.references Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. doi:10.3390/plants8020034 es_ES
dc.description.references Zhou, S.-X., Prentice, I. C., & Medlyn, B. E. (2019). Bridging Drought Experiment and Modeling: Representing the Differential Sensitivities of Leaf Gas Exchange to Drought. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01965 es_ES
dc.description.references Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978 es_ES
dc.description.references Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A., Kourgialas, N. N., Varouchakis, A. E., Karatzas, G. P., & Ritsema, C. J. (2016). The threat of soil salinity: A European scale review. Science of The Total Environment, 573, 727-739. doi:10.1016/j.scitotenv.2016.08.177 es_ES
dc.description.references Cuevas, J., Daliakopoulos, I. N., del Moral, F., Hueso, J. J., & Tsanis, I. K. (2019). A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy, 9(6), 295. doi:10.3390/agronomy9060295 es_ES
dc.description.references In Proceedings of the 5th Assessment Report, WGII, Climate Change 2014: Impacts, Adaptation, and Vulnerability http://www.ipcc.ch/report/ar5/wg2/ es_ES
dc.description.references Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410 es_ES
dc.description.references Tinner, W., Colombaroli, D., Heiri, O., Henne, P. D., Steinacher, M., Untenecker, J., … Valsecchi, V. (2013). The past ecology ofAbies albaprovides new perspectives on future responses of silver fir forests to global warming. Ecological Monographs, 83(4), 419-439. doi:10.1890/12-2231.1 es_ES
dc.description.references Vicario, F., Vendramin, G. G., Rossi, P., Liò, P., & Giannini, R. (1995). Allozyme, chloroplast DNA and RAPD markers for determining genetic relationships between Abies alba and the relic population of Abies nebrodensis. Theoretical and Applied Genetics, 90(7-8), 1012-1018. doi:10.1007/bf00222915 es_ES
dc.description.references Muller, S. D., Nakagawa, T., De Beaulieu, J.-L., Court-Picon, M., Carcaillet, C., Miramont, C., … Bruneton, H. (2007). Post-glacial migration of silver fir (Abies alba Mill.) in the south-western Alps. Journal of Biogeography, 34(5), 876-899. doi:10.1111/j.1365-2699.2006.01665.x es_ES
dc.description.references Ruosch, M., Spahni, R., Joos, F., Henne, P. D., van der Knaap, W. O., & Tinner, W. (2016). Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations. Global Change Biology, 22(2), 727-740. doi:10.1111/gcb.13075 es_ES
dc.description.references Dobrowolska, D., Bončina, A., & Klumpp, R. (2017). Ecology and silviculture of silver fir (Abies alba Mill.): a review. Journal of Forest Research, 22(6), 326-335. doi:10.1080/13416979.2017.1386021 es_ES
dc.description.references Flückiger, W., & Braun, S. (1981). Perspectives of reducing the deleterious effect of de-icing salt upon vegetation. Plant and Soil, 63(3), 527-529. doi:10.1007/bf02370056 es_ES
dc.description.references Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419 es_ES
dc.description.references Cailleret, M., Nourtier, M., Amm, A., Durand-Gillmann, M., & Davi, H. (2013). Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Annals of Forest Science, 71(6), 643-657. doi:10.1007/s13595-013-0265-0 es_ES
dc.description.references Nourtier, M., Chanzy, A., Cailleret, M., Yingge, X., Huc, R., & Davi, H. (2012). Transpiration of silver Fir (Abies alba mill.) during and after drought in relation to soil properties in a Mediterranean mountain area. Annals of Forest Science, 71(6), 683-695. doi:10.1007/s13595-012-0229-9 es_ES
dc.description.references Gazol, A., Camarero, J. J., Gutiérrez, E., Popa, I., Andreu-Hayles, L., Motta, R., … Carrer, M. (2015). Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography, 42(6), 1150-1162. doi:10.1111/jbi.12512 es_ES
dc.description.references TODEA (MORAR), I. M., GONZÁLEZ-ORENGA, S., PLAZAS, M., SESTRAS, A. F., PROHENS, J., VICENTE, O., … BOSCAIU, M. (2019). Screening for Salt and Water Stress Tolerance in Fir (Abies alba) Populations. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1063-1072. doi:10.15835/nbha47411348 es_ES
dc.description.references ZW, S., LK, R., JW, F., Li, Q., KJ, W., MM, G., … XN, L. (2016). Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance  . Plant, Soil and Environment, 62(No. 11), 515-521. doi:10.17221/529/2016-pse es_ES
dc.description.references Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029 es_ES
dc.description.references LUGO-CRUZ, E., ZAVALA-GARCÍA, F., PICÓN-RUBIO, F. J., URÍAS-ORONA, V., RODRÍGUEZ-FUENTES, H., VIDALES-CONTRERAS, J. A., … NIÑO-MEDINA, G. (2016). Water Stress Effect on Cell Wall Components of Maize (Zea mays) Bran. Notulae Scientia Biologicae, 8(1), 81-84. doi:10.15835/nsb819710 es_ES
dc.description.references Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A. A. (2008). The Enigmatic LEA Proteins and Other Hydrophilins. Plant Physiology, 148(1), 6-24. doi:10.1104/pp.108.120725 es_ES
dc.description.references Zhang, D., Tong, J., He, X., Xu, Z., Xu, L., Wei, P., … Shao, H. (2016). A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01237 es_ES
dc.description.references FARDUS, J., MATIN, M. A., HASANUZZAMAN, M., HOSSAIN, M. S., NATH, S. D., HOSSAIN, M. A., … HASANUZZAMAN, M. (2017). Exogenous Salicylic Acid-Mediated Physiological Responses and Improvement in Yield by Modulating Antioxidant Defense System of Wheat under Salinity. Notulae Scientia Biologicae, 9(2), 219-232. doi:10.15835/nsb929998 es_ES
dc.description.references Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x es_ES
dc.description.references Griffith, M., & Yaish, M. W. F. (2004). Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science, 9(8), 399-405. doi:10.1016/j.tplants.2004.06.007 es_ES
dc.description.references Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi:10.1093/aob/mcu239 es_ES
dc.description.references Chen, T. H. H., & Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 13(9), 499-505. doi:10.1016/j.tplants.2008.06.007 es_ES
dc.description.references Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 es_ES
dc.description.references ESFANDIARI, E., & GOHARI, G. (2017). Response of ROS-Scavenging Systems to Salinity Stress in Two Different Wheat (Triticum aestivum L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 287-291. doi:10.15835/nbha45110682 es_ES
dc.description.references Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 es_ES
dc.description.references Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481-489. doi:10.1111/j.1399-3054.2008.01090.x es_ES
dc.description.references LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 es_ES
dc.description.references Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x es_ES
dc.description.references Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 es_ES
dc.description.references Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 es_ES
dc.description.references Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 es_ES
dc.description.references Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 es_ES
dc.description.references Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 es_ES
dc.description.references Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1 es_ES
dc.description.references Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3 es_ES
dc.description.references Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351 es_ES
dc.description.references Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468 es_ES
dc.description.references Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 es_ES
dc.description.references Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 es_ES
dc.description.references Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 es_ES
dc.description.references GANANÇA, J. F. T., FREITAS, J. G. R., NÓBREGA, H. G. M., RODRIGUES, V., ANTUNES, G., GOUVEIA, C. S. S., … LEBOT, V. (2018). Screening for Drought Tolerance in Thirty Three Taro Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 65-74. doi:10.15835/nbha46110950 es_ES
dc.description.references Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2017). Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees, 31(5), 1479-1490. doi:10.1007/s00468-017-1563-1 es_ES
dc.description.references Melo, H. F. de, Souza, E. R. de, & Cunha, J. C. (2017). Fluorescence of chlorophyll a and photosynthetic pigments in Atriplex nummularia under abiotic stresses. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(4), 232-237. doi:10.1590/1807-1929/agriambi.v21n4p232-237 es_ES
dc.description.references Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017 es_ES
dc.description.references Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99. doi:10.1016/j.scienta.2004.04.009 es_ES
dc.description.references Plesa, I. M., Al Hassan, M., González-Orenga, S., Sestras, A. F., Vicente, O., Prohens, J., … Sestras, R. E. (2019). Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances. Forests, 10(6), 511. doi:10.3390/f10060511 es_ES
dc.description.references Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops – what is the cost? New Phytologist, 208(3), 668-673. doi:10.1111/nph.13519 es_ES
dc.description.references Tang, X., Mu, X., Shao, H., Wang, H., & Brestic, M. (2014). Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology, 35(4), 425-437. doi:10.3109/07388551.2014.889080 es_ES
dc.description.references MF, G., Li, N., TY, S., XH, L., Brestič, M., HB, S., … rki, S. (2016). Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water  . Plant, Soil and Environment, 62(No. 7), 314-320. doi:10.17221/771/2015-pse es_ES
dc.description.references Bogemans, J., Neirinckx, L., & Stassart, J. M. (1989). Effect of deicing chloride salts on ion accumulation in spruce (Picea abies (L.) sp.). Plant and Soil, 113(1), 3-11. doi:10.1007/bf02181915 es_ES
dc.description.references RAVEN, J. A. (1985). TANSLEY REVIEW No. 2. New Phytologist, 101(1), 25-77. doi:10.1111/j.1469-8137.1985.tb02816.x es_ES
dc.description.references Manishankar, P., Wang, N., Köster, P., Alatar, A. A., & Kudla, J. (2018). Calcium signaling during salt stress and in the regulation of ion homeostasis. Journal of Experimental Botany, 69(17), 4215-4226. doi:10.1093/jxb/ery201 es_ES
dc.description.references Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053 es_ES
dc.description.references Rodrı́guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. doi:10.1016/s0304-4157(99)00013-1 es_ES
dc.description.references Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106 es_ES
dc.description.references KAVI KISHOR, P. B., & SREENIVASULU, N. (2013). Is proline accumulationper secorrelated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment, 37(2), 300-311. doi:10.1111/pce.12157 es_ES
dc.description.references Ditmarova, L., Kurjak, D., Palmroth, S., Kmet, J., & Strelcova, K. (2009). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, 30(2), 205-213. doi:10.1093/treephys/tpp116 es_ES
dc.description.references Taïbi, K., del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., Pla, D., … Mulet, J. M. (2017). Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01202 es_ES
dc.description.references Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7(11), 1456-1466. doi:10.4161/psb.21949 es_ES
dc.description.references Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 es_ES
dc.description.references Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi:10.1016/s0168-9452(01)00452-6 es_ES
dc.description.references Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161-175. doi:10.3109/07388550903524243 es_ES
dc.description.references Chan, Z., Yokawa, K., Kim, W.-Y., & Song, C.-P. (2016). Editorial: ROS Regulation during Plant Abiotic Stress Responses. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01536 es_ES
dc.description.references Shi, Q., & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63(1-3), 317-326. doi:10.1016/j.envexpbot.2007.11.003 es_ES
dc.description.references Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. doi:10.1016/j.biotechadv.2008.09.003 es_ES
dc.description.references Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00800 es_ES
dc.description.references Tuna, A. L., Kaya, C., Dikilitas, M., & Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62(1), 1-9. doi:10.1016/j.envexpbot.2007.06.007 es_ES
dc.description.references Harinasut, P., Poonsopa, D., Roengmongkol, K., & Charoensataporn, R. (2003). ScienceAsia, 29(2), 109. doi:10.2306/scienceasia1513-1874.2003.29.109 es_ES
dc.description.references Ashraf, M., & Ali, Q. (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63(1-3), 266-273. doi:10.1016/j.envexpbot.2007.11.008 es_ES
dc.description.references Yang, Y., Han, C., Liu, Q., Lin, B., & Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum, 30(4), 433-440. doi:10.1007/s11738-008-0140-z es_ES
dc.description.references Ben Amor, N., Ben Hamed, K., Debez, A., Grignon, C., & Abdelly, C. (2005). Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science, 168(4), 889-899. doi:10.1016/j.plantsci.2004.11.002 es_ES
dc.description.references Kangasjärvi, S., Lepistö, A., Hännikäinen, K., Piippo, M., Luomala, E.-M., Aro, E.-M., & Rintamäki, E. (2008). Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochemical Journal, 412(2), 275-285. doi:10.1042/bj20080030 es_ES
dc.description.references Lee, D. H., & Lee, C. B. (2000). Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Science, 159(1), 75-85. doi:10.1016/s0168-9452(00)00326-5 es_ES
dc.description.references Keleş, Y., & Öncel, I. (2002). Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Science, 163(4), 783-790. doi:10.1016/s0168-9452(02)00213-3 es_ES
dc.description.references Vital, S. A., Fowler, R. W., Virgen, A., Gossett, D. R., Banks, S. W., & Rodriguez, J. (2008). Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environmental and Experimental Botany, 62(1), 60-68. doi:10.1016/j.envexpbot.2007.07.006 es_ES
dc.description.references Naya, L., Ladrera, R., Ramos, J., González, E. M., Arrese-Igor, C., Minchin, F. R., & Becana, M. (2007). The Response of Carbon Metabolism and Antioxidant Defenses of Alfalfa Nodules to Drought Stress and to the Subsequent Recovery of Plants. Plant Physiology, 144(2), 1104-1114. doi:10.1104/pp.107.099648 es_ES
dc.description.references Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 24(13), 2452. doi:10.3390/molecules24132452 es_ES
dc.description.references KEBBAS, S., BENSEDDIK, T., MAKHLOUF, H., & AID, F. (2018). Physiological and Biochemical Behaviour of Gleditsia triacanthos L. Young Seedlings Under Drought Stress Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 585-592. doi:10.15835/nbha46211064 es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem