- -

Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings

Mostrar el registro completo del ítem

Todea (morar), IM.; González-Orenga, S.; Boscaiu, M.; Plazas Ávila, MDLO.; Sestras, AF.; Prohens Tomás, J.; Vicente, O.... (2020). Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings. Forests. 11(4):1-21. https://doi.org/10.3390/f11040395

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166922

Ficheros en el ítem

Metadatos del ítem

Título: Responses to Water Deficit and Salt Stress in Silver Fir (Abies alba Mill.) Seedlings
Autor: Todea (Morar), Irina Maria González-Orenga, Sara Boscaiu, Monica Plazas Ávila, María de la O Sestras, Adriana F. Prohens Tomás, Jaime Vicente, Oscar Sestras, Radu E.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Forest ecosystems are frequently exposed to abiotic stress, which adversely affects their growth, resistance and survival. For silver fir (Abies alba), the physiological and biochemical responses to water and salt ...[+]
Palabras clave: Abiotic stress , Antioxidants , Drought , Ion homeostasis , Osmolytes , Salinity , Silver fir
Derechos de uso: Reconocimiento (by)
Fuente:
Forests. (eissn: 1999-4907 )
DOI: 10.3390/f11040395
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/f11040395
Código del Proyecto:
info:eu-repo/grantAgreement/MCI//37%2F2018-2020/
Agradecimientos:
This research was partially funded by Doctoral School from the University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, granted to I.M.T. The publication was supported by funds from the National Research ...[+]
Tipo: Artículo

References

Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. doi:10.3390/plants8020034

Zhou, S.-X., Prentice, I. C., & Medlyn, B. E. (2019). Bridging Drought Experiment and Modeling: Representing the Differential Sensitivities of Leaf Gas Exchange to Drought. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01965

Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978 [+]
Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. doi:10.3390/plants8020034

Zhou, S.-X., Prentice, I. C., & Medlyn, B. E. (2019). Bridging Drought Experiment and Modeling: Representing the Differential Sensitivities of Leaf Gas Exchange to Drought. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01965

Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978

Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A., Kourgialas, N. N., Varouchakis, A. E., Karatzas, G. P., & Ritsema, C. J. (2016). The threat of soil salinity: A European scale review. Science of The Total Environment, 573, 727-739. doi:10.1016/j.scitotenv.2016.08.177

Cuevas, J., Daliakopoulos, I. N., del Moral, F., Hueso, J. J., & Tsanis, I. K. (2019). A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy, 9(6), 295. doi:10.3390/agronomy9060295

In Proceedings of the 5th Assessment Report, WGII, Climate Change 2014: Impacts, Adaptation, and Vulnerability http://www.ipcc.ch/report/ar5/wg2/

Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410

Tinner, W., Colombaroli, D., Heiri, O., Henne, P. D., Steinacher, M., Untenecker, J., … Valsecchi, V. (2013). The past ecology ofAbies albaprovides new perspectives on future responses of silver fir forests to global warming. Ecological Monographs, 83(4), 419-439. doi:10.1890/12-2231.1

Vicario, F., Vendramin, G. G., Rossi, P., Liò, P., & Giannini, R. (1995). Allozyme, chloroplast DNA and RAPD markers for determining genetic relationships between Abies alba and the relic population of Abies nebrodensis. Theoretical and Applied Genetics, 90(7-8), 1012-1018. doi:10.1007/bf00222915

Muller, S. D., Nakagawa, T., De Beaulieu, J.-L., Court-Picon, M., Carcaillet, C., Miramont, C., … Bruneton, H. (2007). Post-glacial migration of silver fir (Abies alba Mill.) in the south-western Alps. Journal of Biogeography, 34(5), 876-899. doi:10.1111/j.1365-2699.2006.01665.x

Ruosch, M., Spahni, R., Joos, F., Henne, P. D., van der Knaap, W. O., & Tinner, W. (2016). Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations. Global Change Biology, 22(2), 727-740. doi:10.1111/gcb.13075

Dobrowolska, D., Bončina, A., & Klumpp, R. (2017). Ecology and silviculture of silver fir (Abies alba Mill.): a review. Journal of Forest Research, 22(6), 326-335. doi:10.1080/13416979.2017.1386021

Flückiger, W., & Braun, S. (1981). Perspectives of reducing the deleterious effect of de-icing salt upon vegetation. Plant and Soil, 63(3), 527-529. doi:10.1007/bf02370056

Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419

Cailleret, M., Nourtier, M., Amm, A., Durand-Gillmann, M., & Davi, H. (2013). Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Annals of Forest Science, 71(6), 643-657. doi:10.1007/s13595-013-0265-0

Nourtier, M., Chanzy, A., Cailleret, M., Yingge, X., Huc, R., & Davi, H. (2012). Transpiration of silver Fir (Abies alba mill.) during and after drought in relation to soil properties in a Mediterranean mountain area. Annals of Forest Science, 71(6), 683-695. doi:10.1007/s13595-012-0229-9

Gazol, A., Camarero, J. J., Gutiérrez, E., Popa, I., Andreu-Hayles, L., Motta, R., … Carrer, M. (2015). Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography, 42(6), 1150-1162. doi:10.1111/jbi.12512

TODEA (MORAR), I. M., GONZÁLEZ-ORENGA, S., PLAZAS, M., SESTRAS, A. F., PROHENS, J., VICENTE, O., … BOSCAIU, M. (2019). Screening for Salt and Water Stress Tolerance in Fir (Abies alba) Populations. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1063-1072. doi:10.15835/nbha47411348

ZW, S., LK, R., JW, F., Li, Q., KJ, W., MM, G., … XN, L. (2016). Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance  . Plant, Soil and Environment, 62(No. 11), 515-521. doi:10.17221/529/2016-pse

Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029

LUGO-CRUZ, E., ZAVALA-GARCÍA, F., PICÓN-RUBIO, F. J., URÍAS-ORONA, V., RODRÍGUEZ-FUENTES, H., VIDALES-CONTRERAS, J. A., … NIÑO-MEDINA, G. (2016). Water Stress Effect on Cell Wall Components of Maize (Zea mays) Bran. Notulae Scientia Biologicae, 8(1), 81-84. doi:10.15835/nsb819710

Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A. A. (2008). The Enigmatic LEA Proteins and Other Hydrophilins. Plant Physiology, 148(1), 6-24. doi:10.1104/pp.108.120725

Zhang, D., Tong, J., He, X., Xu, Z., Xu, L., Wei, P., … Shao, H. (2016). A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01237

FARDUS, J., MATIN, M. A., HASANUZZAMAN, M., HOSSAIN, M. S., NATH, S. D., HOSSAIN, M. A., … HASANUZZAMAN, M. (2017). Exogenous Salicylic Acid-Mediated Physiological Responses and Improvement in Yield by Modulating Antioxidant Defense System of Wheat under Salinity. Notulae Scientia Biologicae, 9(2), 219-232. doi:10.15835/nsb929998

Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x

Griffith, M., & Yaish, M. W. F. (2004). Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science, 9(8), 399-405. doi:10.1016/j.tplants.2004.06.007

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433-447. doi:10.1093/aob/mcu239

Chen, T. H. H., & Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science, 13(9), 499-505. doi:10.1016/j.tplants.2008.06.007

Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009

ESFANDIARI, E., & GOHARI, G. (2017). Response of ROS-Scavenging Systems to Salinity Stress in Two Different Wheat (Triticum aestivum L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 287-291. doi:10.15835/nbha45110682

Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701

Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481-489. doi:10.1111/j.1399-3054.2008.01090.x

LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591

Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017

Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524

Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2

Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3

Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 161(2), 559-566. doi:10.1016/0003-2697(87)90489-1

Aebi, H. (1984). [13] Catalase in vitro. Oxygen Radicals in Biological Systems, 121-126. doi:10.1016/s0076-6879(84)05016-3

Connell, J. P., & Mullet, J. E. (1986). Pea Chloroplast Glutathione Reductase: Purification and Characterization. Plant Physiology, 82(2), 351-356. doi:10.1104/pp.82.2.351

Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468

Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003

Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0

Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911

GANANÇA, J. F. T., FREITAS, J. G. R., NÓBREGA, H. G. M., RODRIGUES, V., ANTUNES, G., GOUVEIA, C. S. S., … LEBOT, V. (2018). Screening for Drought Tolerance in Thirty Three Taro Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 65-74. doi:10.15835/nbha46110950

Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2017). Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce (Picea abies L. Karst). Trees, 31(5), 1479-1490. doi:10.1007/s00468-017-1563-1

Melo, H. F. de, Souza, E. R. de, & Cunha, J. C. (2017). Fluorescence of chlorophyll a and photosynthetic pigments in Atriplex nummularia under abiotic stresses. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(4), 232-237. doi:10.1590/1807-1929/agriambi.v21n4p232-237

Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017

Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 103(1), 93-99. doi:10.1016/j.scienta.2004.04.009

Plesa, I. M., Al Hassan, M., González-Orenga, S., Sestras, A. F., Vicente, O., Prohens, J., … Sestras, R. E. (2019). Responses to Drought in Seedlings of European Larch (Larix decidua Mill.) from Several Carpathian Provenances. Forests, 10(6), 511. doi:10.3390/f10060511

Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops – what is the cost? New Phytologist, 208(3), 668-673. doi:10.1111/nph.13519

Tang, X., Mu, X., Shao, H., Wang, H., & Brestic, M. (2014). Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Critical Reviews in Biotechnology, 35(4), 425-437. doi:10.3109/07388551.2014.889080

MF, G., Li, N., TY, S., XH, L., Brestič, M., HB, S., … rki, S. (2016). Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water  . Plant, Soil and Environment, 62(No. 7), 314-320. doi:10.17221/771/2015-pse

Bogemans, J., Neirinckx, L., & Stassart, J. M. (1989). Effect of deicing chloride salts on ion accumulation in spruce (Picea abies (L.) sp.). Plant and Soil, 113(1), 3-11. doi:10.1007/bf02181915

RAVEN, J. A. (1985). TANSLEY REVIEW No. 2. New Phytologist, 101(1), 25-77. doi:10.1111/j.1469-8137.1985.tb02816.x

Manishankar, P., Wang, N., Köster, P., Alatar, A. A., & Kudla, J. (2018). Calcium signaling during salt stress and in the regulation of ion homeostasis. Journal of Experimental Botany, 69(17), 4215-4226. doi:10.1093/jxb/ery201

Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053

Rodrı́guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. doi:10.1016/s0304-4157(99)00013-1

Almeida, D. M., Oliveira, M. M., & Saibo, N. J. M. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology, 40(1 suppl 1), 326-345. doi:10.1590/1678-4685-gmb-2016-0106

KAVI KISHOR, P. B., & SREENIVASULU, N. (2013). Is proline accumulationper secorrelated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment, 37(2), 300-311. doi:10.1111/pce.12157

Ditmarova, L., Kurjak, D., Palmroth, S., Kmet, J., & Strelcova, K. (2009). Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiology, 30(2), 205-213. doi:10.1093/treephys/tpp116

Taïbi, K., del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., Pla, D., … Mulet, J. M. (2017). Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01202

Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7(11), 1456-1466. doi:10.4161/psb.21949

Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359

Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405-414. doi:10.1016/s0168-9452(01)00452-6

Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161-175. doi:10.3109/07388550903524243

Chan, Z., Yokawa, K., Kim, W.-Y., & Song, C.-P. (2016). Editorial: ROS Regulation during Plant Abiotic Stress Responses. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01536

Shi, Q., & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63(1-3), 317-326. doi:10.1016/j.envexpbot.2007.11.003

Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27(1), 84-93. doi:10.1016/j.biotechadv.2008.09.003

Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00800

Tuna, A. L., Kaya, C., Dikilitas, M., & Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62(1), 1-9. doi:10.1016/j.envexpbot.2007.06.007

Harinasut, P., Poonsopa, D., Roengmongkol, K., & Charoensataporn, R. (2003). ScienceAsia, 29(2), 109. doi:10.2306/scienceasia1513-1874.2003.29.109

Ashraf, M., & Ali, Q. (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63(1-3), 266-273. doi:10.1016/j.envexpbot.2007.11.008

Yang, Y., Han, C., Liu, Q., Lin, B., & Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum, 30(4), 433-440. doi:10.1007/s11738-008-0140-z

Ben Amor, N., Ben Hamed, K., Debez, A., Grignon, C., & Abdelly, C. (2005). Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science, 168(4), 889-899. doi:10.1016/j.plantsci.2004.11.002

Kangasjärvi, S., Lepistö, A., Hännikäinen, K., Piippo, M., Luomala, E.-M., Aro, E.-M., & Rintamäki, E. (2008). Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochemical Journal, 412(2), 275-285. doi:10.1042/bj20080030

Lee, D. H., & Lee, C. B. (2000). Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Science, 159(1), 75-85. doi:10.1016/s0168-9452(00)00326-5

Keleş, Y., & Öncel, I. (2002). Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Science, 163(4), 783-790. doi:10.1016/s0168-9452(02)00213-3

Vital, S. A., Fowler, R. W., Virgen, A., Gossett, D. R., Banks, S. W., & Rodriguez, J. (2008). Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environmental and Experimental Botany, 62(1), 60-68. doi:10.1016/j.envexpbot.2007.07.006

Naya, L., Ladrera, R., Ramos, J., González, E. M., Arrese-Igor, C., Minchin, F. R., & Becana, M. (2007). The Response of Carbon Metabolism and Antioxidant Defenses of Alfalfa Nodules to Drought Stress and to the Subsequent Recovery of Plants. Plant Physiology, 144(2), 1104-1114. doi:10.1104/pp.107.099648

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 24(13), 2452. doi:10.3390/molecules24132452

KEBBAS, S., BENSEDDIK, T., MAKHLOUF, H., & AID, F. (2018). Physiological and Biochemical Behaviour of Gleditsia triacanthos L. Young Seedlings Under Drought Stress Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 585-592. doi:10.15835/nbha46211064

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem