- -

Modelling an Industrial Robot and Its Impact on Productivity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modelling an Industrial Robot and Its Impact on Productivity

Show full item record

Llopis-Albert, C.; Rubio Montoya, FJ.; Valero Chuliá, FJ. (2021). Modelling an Industrial Robot and Its Impact on Productivity. Mathematics. 9(7):1-13. https://doi.org/10.3390/math9070769

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166924

Files in this item

Item Metadata

Title: Modelling an Industrial Robot and Its Impact on Productivity
Author: Llopis-Albert, Carlos Rubio Montoya, Francisco José Valero Chuliá, Francisco José
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] This research aims to design an efficient algorithm leading to an improvement of productivity by posing a multi-objective optimization, in which both the time consumed to carry out scheduled tasks and the associated ...[+]
Subjects: Adaptive fuzzy sliding mode control , Controller , Multi-objective optimization , Robotics , Trajectory planning , Pareto frontier , Trade-offs , Productivity assessment
Copyrigths: Reconocimiento (by)
Source:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math9070769
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/math9070769
Type: Artículo

References

AOYAMA, T., NISHI, T., & ZHANG, G. (2017). Production planning problem with market impact under demand uncertainty. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 11(2), JAMDSM0019-JAMDSM0019. doi:10.1299/jamdsm.2017jamdsm0019

Llopis-Albert, C., Rubio, F., & Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68(7), 1429-1431. doi:10.1016/j.jbusres.2015.01.027

Rubio, F., Valero, F., Sunyer, J., & Cuadrado, J. (2012). Optimal time trajectories for industrial robots with torque, power, jerk and energy consumed constraints. Industrial Robot: An International Journal, 39(1), 92-100. doi:10.1108/01439911211192538 [+]
AOYAMA, T., NISHI, T., & ZHANG, G. (2017). Production planning problem with market impact under demand uncertainty. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 11(2), JAMDSM0019-JAMDSM0019. doi:10.1299/jamdsm.2017jamdsm0019

Llopis-Albert, C., Rubio, F., & Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68(7), 1429-1431. doi:10.1016/j.jbusres.2015.01.027

Rubio, F., Valero, F., Sunyer, J., & Cuadrado, J. (2012). Optimal time trajectories for industrial robots with torque, power, jerk and energy consumed constraints. Industrial Robot: An International Journal, 39(1), 92-100. doi:10.1108/01439911211192538

Llopis-Albert, C., Rubio, F., & Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1. doi:10.4995/muse.2018.9867

Yang, Y., Pan, J., & Wan, W. (2019). Survey of optimal motion planning. IET Cyber-Systems and Robotics, 1(1), 13-19. doi:10.1049/iet-csr.2018.0003

Gasparetto, A., & Zanotto, V. (2008). A technique for time-jerk optimal planning of robot trajectories. Robotics and Computer-Integrated Manufacturing, 24(3), 415-426. doi:10.1016/j.rcim.2007.04.001

Mohammed, A., Schmidt, B., Wang, L., & Gao, L. (2014). Minimizing Energy Consumption for Robot Arm Movement. Procedia CIRP, 25, 400-405. doi:10.1016/j.procir.2014.10.055

Van den Berg, J., Abbeel, P., & Goldberg, K. (2011). LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. The International Journal of Robotics Research, 30(7), 895-913. doi:10.1177/0278364911406562

Liu, S., Sun, D., & Zhu, C. (2011). Coordinated Motion Planning for Multiple Mobile Robots Along Designed Paths With Formation Requirement. IEEE/ASME Transactions on Mechatronics, 16(6), 1021-1031. doi:10.1109/tmech.2010.2070843

Plaku, E., Kavraki, L. E., & Vardi, M. Y. (2010). Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning. IEEE Transactions on Robotics, 26(3), 469-482. doi:10.1109/tro.2010.2047820

Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2015). Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 2015, 1-10. doi:10.1155/2015/931048

Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. doi:10.1016/j.robot.2016.09.008

Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J. L., Zamora-Ortiz, P., & Escarabajal, R. J. (2020). Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. doi:10.3390/su12145803

Llopis-Albert, C., Valero, F., Mata, V., Escarabajal, R. J., Zamora-Ortiz, P., & Pulloquinga, J. L. (2020). Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113. doi:10.4995/muse.2020.13352

Yang, J., Su, H., Li, Z., Ao, D., & Song, R. (2016). Adaptive control with a fuzzy tuner for cable-based rehabilitation robot. International Journal of Control, Automation and Systems, 14(3), 865-875. doi:10.1007/s12555-015-0049-4

Zhang, G., & Zhang, X. (2016). Concise adaptive fuzzy control of nonlinearly parameterized and periodically time-varying systems via small gain theory. International Journal of Control, Automation and Systems, 14(4), 893-905. doi:10.1007/s12555-015-0054-7

SUTONO, S. B., ABDUL-RASHID, S. H., AOYAMA, H., & TAHA, Z. (2016). Fuzzy-based Taguchi method for multi-response optimization of product form design in Kansei engineering: a case study on car form design. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 10(9), JAMDSM0108-JAMDSM0108. doi:10.1299/jamdsm.2016jamdsm0108

DUBEY, A. K. (2009). Performance Optimization Control of ECH using Fuzzy Inference Application. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 3(1), 22-34. doi:10.1299/jamdsm.3.22

Zhang, H., Fang, H., Zhang, D., Luo, X., & Zou, Q. (2020). Adaptive Fuzzy Sliding Mode Control for a 3-DOF Parallel Manipulator with Parameters Uncertainties. Complexity, 2020, 1-16. doi:10.1155/2020/2565316

Markazi, A. H. D., Maadani, M., Zabihifar, S. H., & Doost-Mohammadi, N. (2018). Adaptive Fuzzy Sliding Mode Control of Under-actuated Nonlinear Systems. International Journal of Automation and Computing, 15(3), 364-376. doi:10.1007/s11633-017-1108-5

Truong, H. V. A., Tran, D. T., To, X. D., Ahn, K. K., & Jin, M. (2019). Adaptive Fuzzy Backstepping Sliding Mode Control for a 3-DOF Hydraulic Manipulator with Nonlinear Disturbance Observer for Large Payload Variation. Applied Sciences, 9(16), 3290. doi:10.3390/app9163290

Li, T.-H. S., & Huang, Y.-C. (2010). MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Information Sciences, 180(23), 4641-4660. doi:10.1016/j.ins.2010.08.009

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record