- -

Modelling an Industrial Robot and Its Impact on Productivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelling an Industrial Robot and Its Impact on Productivity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis-Albert, Carlos es_ES
dc.contributor.author Rubio Montoya, Francisco José es_ES
dc.contributor.author Valero Chuliá, Francisco José es_ES
dc.date.accessioned 2021-05-28T03:35:11Z
dc.date.available 2021-05-28T03:35:11Z
dc.date.issued 2021-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166924
dc.description.abstract [EN] This research aims to design an efficient algorithm leading to an improvement of productivity by posing a multi-objective optimization, in which both the time consumed to carry out scheduled tasks and the associated costs of the autonomous industrial system are minimized. The algorithm proposed models the kinematics and dynamics of the industrial robot, provides collision-free trajectories, allows to constrain the energy consumed and meets the physical characteristics of the robot (i.e., restriction on torque, jerks and power in all driving motors). Additionally, the trajectory tracking accuracy is improved using an adaptive fuzzy sliding mode control (AFSMC), which allows compensating for parametric uncertainties, bounded external disturbances and constraint uncertainties. Therefore, the system stability and robustness are enhanced; thus, overcoming some of the limitations of the traditional proportional-integral-derivative (PID) controllers. The trade-offs among the economic issues related to the assembly line and the optimal time trajectory of the desired motion are analyzed using Pareto fronts. The technique is tested in different examples for a six-degrees-of-freedom (DOF) robot system. Results have proved how the use of this methodology enhances the performance and reliability of assembly lines. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Adaptive fuzzy sliding mode control es_ES
dc.subject Controller es_ES
dc.subject Multi-objective optimization es_ES
dc.subject Robotics es_ES
dc.subject Trajectory planning es_ES
dc.subject Pareto frontier es_ES
dc.subject Trade-offs es_ES
dc.subject Productivity assessment es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Modelling an Industrial Robot and Its Impact on Productivity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math9070769 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Llopis-Albert, C.; Rubio Montoya, FJ.; Valero Chuliá, FJ. (2021). Modelling an Industrial Robot and Its Impact on Productivity. Mathematics. 9(7):1-13. https://doi.org/10.3390/math9070769 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math9070769 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\432146 es_ES
dc.description.references AOYAMA, T., NISHI, T., & ZHANG, G. (2017). Production planning problem with market impact under demand uncertainty. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 11(2), JAMDSM0019-JAMDSM0019. doi:10.1299/jamdsm.2017jamdsm0019 es_ES
dc.description.references Llopis-Albert, C., Rubio, F., & Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68(7), 1429-1431. doi:10.1016/j.jbusres.2015.01.027 es_ES
dc.description.references Rubio, F., Valero, F., Sunyer, J., & Cuadrado, J. (2012). Optimal time trajectories for industrial robots with torque, power, jerk and energy consumed constraints. Industrial Robot: An International Journal, 39(1), 92-100. doi:10.1108/01439911211192538 es_ES
dc.description.references Llopis-Albert, C., Rubio, F., & Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1. doi:10.4995/muse.2018.9867 es_ES
dc.description.references Yang, Y., Pan, J., & Wan, W. (2019). Survey of optimal motion planning. IET Cyber-Systems and Robotics, 1(1), 13-19. doi:10.1049/iet-csr.2018.0003 es_ES
dc.description.references Gasparetto, A., & Zanotto, V. (2008). A technique for time-jerk optimal planning of robot trajectories. Robotics and Computer-Integrated Manufacturing, 24(3), 415-426. doi:10.1016/j.rcim.2007.04.001 es_ES
dc.description.references Mohammed, A., Schmidt, B., Wang, L., & Gao, L. (2014). Minimizing Energy Consumption for Robot Arm Movement. Procedia CIRP, 25, 400-405. doi:10.1016/j.procir.2014.10.055 es_ES
dc.description.references Van den Berg, J., Abbeel, P., & Goldberg, K. (2011). LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. The International Journal of Robotics Research, 30(7), 895-913. doi:10.1177/0278364911406562 es_ES
dc.description.references Liu, S., Sun, D., & Zhu, C. (2011). Coordinated Motion Planning for Multiple Mobile Robots Along Designed Paths With Formation Requirement. IEEE/ASME Transactions on Mechatronics, 16(6), 1021-1031. doi:10.1109/tmech.2010.2070843 es_ES
dc.description.references Plaku, E., Kavraki, L. E., & Vardi, M. Y. (2010). Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning. IEEE Transactions on Robotics, 26(3), 469-482. doi:10.1109/tro.2010.2047820 es_ES
dc.description.references Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2015). Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 2015, 1-10. doi:10.1155/2015/931048 es_ES
dc.description.references Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. doi:10.1016/j.robot.2016.09.008 es_ES
dc.description.references Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J. L., Zamora-Ortiz, P., & Escarabajal, R. J. (2020). Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. doi:10.3390/su12145803 es_ES
dc.description.references Llopis-Albert, C., Valero, F., Mata, V., Escarabajal, R. J., Zamora-Ortiz, P., & Pulloquinga, J. L. (2020). Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113. doi:10.4995/muse.2020.13352 es_ES
dc.description.references Yang, J., Su, H., Li, Z., Ao, D., & Song, R. (2016). Adaptive control with a fuzzy tuner for cable-based rehabilitation robot. International Journal of Control, Automation and Systems, 14(3), 865-875. doi:10.1007/s12555-015-0049-4 es_ES
dc.description.references Zhang, G., & Zhang, X. (2016). Concise adaptive fuzzy control of nonlinearly parameterized and periodically time-varying systems via small gain theory. International Journal of Control, Automation and Systems, 14(4), 893-905. doi:10.1007/s12555-015-0054-7 es_ES
dc.description.references SUTONO, S. B., ABDUL-RASHID, S. H., AOYAMA, H., & TAHA, Z. (2016). Fuzzy-based Taguchi method for multi-response optimization of product form design in Kansei engineering: a case study on car form design. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 10(9), JAMDSM0108-JAMDSM0108. doi:10.1299/jamdsm.2016jamdsm0108 es_ES
dc.description.references DUBEY, A. K. (2009). Performance Optimization Control of ECH using Fuzzy Inference Application. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 3(1), 22-34. doi:10.1299/jamdsm.3.22 es_ES
dc.description.references Zhang, H., Fang, H., Zhang, D., Luo, X., & Zou, Q. (2020). Adaptive Fuzzy Sliding Mode Control for a 3-DOF Parallel Manipulator with Parameters Uncertainties. Complexity, 2020, 1-16. doi:10.1155/2020/2565316 es_ES
dc.description.references Markazi, A. H. D., Maadani, M., Zabihifar, S. H., & Doost-Mohammadi, N. (2018). Adaptive Fuzzy Sliding Mode Control of Under-actuated Nonlinear Systems. International Journal of Automation and Computing, 15(3), 364-376. doi:10.1007/s11633-017-1108-5 es_ES
dc.description.references Truong, H. V. A., Tran, D. T., To, X. D., Ahn, K. K., & Jin, M. (2019). Adaptive Fuzzy Backstepping Sliding Mode Control for a 3-DOF Hydraulic Manipulator with Nonlinear Disturbance Observer for Large Payload Variation. Applied Sciences, 9(16), 3290. doi:10.3390/app9163290 es_ES
dc.description.references Li, T.-H. S., & Huang, Y.-C. (2010). MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Information Sciences, 180(23), 4641-4660. doi:10.1016/j.ins.2010.08.009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem