- -

Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives

Mostrar el registro completo del ítem

Canal, R.; Hernández Luz, C.; Tornero-Gavilá, R.; Cilardo, A.; Massari, G.; Reghenzani, F.; Fornaciari, W.... (2020). Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives. ACM Computing Surveys. 53(5):1-32. https://doi.org/10.1145/3403956

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166962

Ficheros en el ítem

Metadatos del ítem

Título: Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives
Autor: Canal, Ramon Hernández Luz, Carles Tornero-Gavilá, Rafael Cilardo, Alessandro Massari, Giuseppe Reghenzani, Federico Fornaciari, William Zapater, Marina Atienza, David Oleksiak, Ariel Piatek, Wojciech Abella, Jaume
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] Performance and power constraints come together with Complementary Metal Oxide Semiconductor technology scaling in future Exascale systems. Technology scaling makes each individual transistor more prone to faults and, ...[+]
Palabras clave: HPC , Supercomputing , Exascale , Reliability , Prediction , Survey , Faults , Failures
Derechos de uso: Reserva de todos los derechos
Fuente:
ACM Computing Surveys. (issn: 0360-0300 )
DOI: 10.1145/3403956
Editorial:
Association for Computing Machinery
Versión del editor: https://doi.org/10.1145/3403956
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/801137/EU/REliable power and time-ConstraInts-aware Predictive management of heterogeneous Exascale systems/
info:eu-repo/grantAgreement/MINECO//RYC-2013-14717/ES/RYC-2013-14717/
info:eu-repo/grantAgreement/MINECO//TIN2015-65316-P/ES/COMPUTACION DE ALTAS PRESTACIONES VII/
info:eu-repo/grantAgreement/Generalitat de Catalunya//2017 SGR 0962/
Descripción: © ACM, 2020. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. https://doi.org/10.1145/3403956
Agradecimientos:
This work has received funding from the European Union's Horizon 2020 (H2020) research and innovation program under the FET-HPC Grant Agreement No. 801137 (RECIPE). Jaume Abella was also partially supported by the Ministry ...[+]
Tipo: Artículo

References

Abella, J., Hernandez, C., Quinones, E., Cazorla, F. J., Conmy, P. R., Azkarate-askasua, M., … Vardanega, T. (2015). WCET analysis methods: Pitfalls and challenges on their trustworthiness. 10th IEEE International Symposium on Industrial Embedded Systems (SIES). doi:10.1109/sies.2015.7185039

E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324. E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324.

Agullo, E., Giraud, L., Salas, P., & Zounon, M. (2016). Interpolation-Restart Strategies for Resilient Eigensolvers. SIAM Journal on Scientific Computing, 38(5), C560-C583. doi:10.1137/15m1042115 [+]
Abella, J., Hernandez, C., Quinones, E., Cazorla, F. J., Conmy, P. R., Azkarate-askasua, M., … Vardanega, T. (2015). WCET analysis methods: Pitfalls and challenges on their trustworthiness. 10th IEEE International Symposium on Industrial Embedded Systems (SIES). doi:10.1109/sies.2015.7185039

E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324. E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324.

Agullo, E., Giraud, L., Salas, P., & Zounon, M. (2016). Interpolation-Restart Strategies for Resilient Eigensolvers. SIAM Journal on Scientific Computing, 38(5), C560-C583. doi:10.1137/15m1042115

Al-Qawasmeh, A. M., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2015). Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers. IEEE Transactions on Computers, 64(2), 477-491. doi:10.1109/tc.2013.116

ARM. 2017. ARM Reliability Availability and Serviceability (RAS) Specification—ARMv8 for the ARMv8-A Architecture Profile. White paper. Retrieved from https://developer.arm.com/docs/ddi0587/latest. ARM. 2017. ARM Reliability Availability and Serviceability (RAS) Specification—ARMv8 for the ARMv8-A Architecture Profile. White paper. Retrieved from https://developer.arm.com/docs/ddi0587/latest.

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11-33. doi:10.1109/tdsc.2004.2

Bautista-Gomez, L., Zyulkyarov, F., Unsal, O., & McIntosh-Smith, S. (2016). Unprotected Computing: A Large-Scale Study of DRAM Raw Error Rate on a Supercomputer. SC16: International Conference for High Performance Computing, Networking, Storage and Analysis. doi:10.1109/sc.2016.54

Berrocal, E., Bautista-Gomez, L., Di, S., Lan, Z., & Cappello, F. (2017). Toward General Software Level Silent Data Corruption Detection for Parallel Applications. IEEE Transactions on Parallel and Distributed Systems, 28(12), 3642-3655. doi:10.1109/tpds.2017.2735971

M.-A. Breuer and A. D. Friedman. 1976. Diagnosis 8 Reliable Design of Digital Systems. Springer. M.-A. Breuer and A. D. Friedman. 1976. Diagnosis 8 Reliable Design of Digital Systems. Springer.

P. Bridges K. Ferreira M. Heroux and M. Hoemmen. 2012. Fault-tolerant linear solvers via selective reliability. ArXiv e-prints June 2012. arXiv:1206.1390 [math.NA]. P. Bridges K. Ferreira M. Heroux and M. Hoemmen. 2012. Fault-tolerant linear solvers via selective reliability. ArXiv e-prints June 2012. arXiv:1206.1390 [math.NA].

F. Cappello A. Geist W. Gropp S. Kale B. Kramer and M. Snir. 2014. Toward exascale resilience: 2014 update. Supercomput. Front. Innovat. 1 1 (2014). http://superfri.org/superfri/article/view/14. F. Cappello A. Geist W. Gropp S. Kale B. Kramer and M. Snir. 2014. Toward exascale resilience: 2014 update. Supercomput. Front. Innovat. 1 1 (2014). http://superfri.org/superfri/article/view/14.

F. J. Cazorla L. Kosmidis E. Mezzetti C. Hernandez J. Abella and T. Vardanega. 2019. Probabilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Comput. Surv. 52 1 Article 14 (Feb. 2019) 35 pages. DOI:https://doi.org/10.1145/3301283 F. J. Cazorla L. Kosmidis E. Mezzetti C. Hernandez J. Abella and T. Vardanega. 2019. Probabilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Comput. Surv. 52 1 Article 14 (Feb. 2019) 35 pages. DOI:https://doi.org/10.1145/3301283

Chan, C. S., Pan, B., Gross, K., Vaidyanathan, K., & Rosing, T. Š. (2014). Correcting vibration-induced performance degradation in enterprise servers. ACM SIGMETRICS Performance Evaluation Review, 41(3), 83-88. doi:10.1145/2567529.2567555

Chantem, T., Hu, X. S., & Dick, R. P. (2011). Temperature-Aware Scheduling and Assignment for Hard Real-Time Applications on MPSoCs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(10), 1884-1897. doi:10.1109/tvlsi.2010.2058873

Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., & Brewer, E. (s. f.). Pinpoint: problem determination in large, dynamic Internet services. Proceedings International Conference on Dependable Systems and Networks. doi:10.1109/dsn.2002.1029005

Chen, Z. (2011). Algorithm-based recovery for iterative methods without checkpointing. Proceedings of the 20th international symposium on High performance distributed computing - HPDC ’11. doi:10.1145/1996130.1996142

Chen, Z. (2013). Online-ABFT. Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP ’13. doi:10.1145/2442516.2442533

Coskun, A. K., Rosing, T. S., Mihic, K., De Micheli, G., & Leblebici, Y. (2006). Analysis and Optimization of MPSoC Reliability. Journal of Low Power Electronics, 2(1), 56-69. doi:10.1166/jolpe.2006.007

G. Da Costa A. Oleksiak W. Piatek J. Salom and L. Sisó. 2015. Minimization of costs and energy consumption in a data center by a workload-based capacity management. In Energy Efficient Data Centers S. Klingert M. Chinnici and M. Rey Porto (Eds.). Springer International Publishing Cham 102--119. G. Da Costa A. Oleksiak W. Piatek J. Salom and L. Sisó. 2015. Minimization of costs and energy consumption in a data center by a workload-based capacity management. In Energy Efficient Data Centers S. Klingert M. Chinnici and M. Rey Porto (Eds.). Springer International Publishing Cham 102--119.

Cupertino, L., Da Costa, G., Oleksiak, A., Pia¸tek, W., Pierson, J.-M., Salom, J., … Zilio, T. (2015). Energy-efficient, thermal-aware modeling and simulation of data centers: The CoolEmAll approach and evaluation results. Ad Hoc Networks, 25, 535-553. doi:10.1016/j.adhoc.2014.11.002

Dally, W. J. (1991). Express cubes: improving the performance of k-ary n-cube interconnection networks. IEEE Transactions on Computers, 40(9), 1016-1023. doi:10.1109/12.83652

Dauwe, D., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2018). Resilience-Aware Resource Management for Exascale Computing Systems. IEEE Transactions on Sustainable Computing, 3(4), 332-345. doi:10.1109/tsusc.2018.2797890

R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43 4 Article 35 (Oct. 2011) 44 pages. DOI:https://doi.org/10.1145/1978802.1978814 R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43 4 Article 35 (Oct. 2011) 44 pages. DOI:https://doi.org/10.1145/1978802.1978814

Di, S., & Cappello, F. (2016). Adaptive Impact-Driven Detection of Silent Data Corruption for HPC Applications. IEEE Transactions on Parallel and Distributed Systems, 27(10), 2809-2823. doi:10.1109/tpds.2016.2517639

Di, S., Guo, H., Gupta, R., Pershey, E. R., Snir, M., & Cappello, F. (2019). Exploring Properties and Correlations of Fatal Events in a Large-Scale HPC System. IEEE Transactions on Parallel and Distributed Systems, 30(2), 361-374. doi:10.1109/tpds.2018.2864184

Di, S., Robert, Y., Vivien, F., & Cappello, F. (2017). Toward an Optimal Online Checkpoint Solution under a Two-Level HPC Checkpoint Model. IEEE Transactions on Parallel and Distributed Systems, 28(1), 244-259. doi:10.1109/tpds.2016.2546248

J. Dongarra T. Herault and Y. Robert. 2015. Fault Tolerance Techniques for High-Performance Computing. Springer. J. Dongarra T. Herault and Y. Robert. 2015. Fault Tolerance Techniques for High-Performance Computing. Springer.

DOWNING, S., & SOCIE, D. (1982). Simple rainflow counting algorithms. International Journal of Fatigue, 4(1), 31-40. doi:10.1016/0142-1123(82)90018-4

Eghbalkhah, B., Kamal, M., Afzali-Kusha, H., Afzali-Kusha, A., Ghaznavi-Ghoushchi, M. B., & Pedram, M. (2015). Workload and temperature dependent evaluation of BTI-induced lifetime degradation in digital circuits. Microelectronics Reliability, 55(8), 1152-1162. doi:10.1016/j.microrel.2015.06.004

Gottscho, M., Shoaib, M., Govindan, S., Sharma, B., Wang, D., & Gupta, P. (2017). Measuring the Impact of Memory Errors on Application  Performance. IEEE Computer Architecture Letters, 16(1), 51-55. doi:10.1109/lca.2016.2599513

Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., … Sengupta, S. (2011). VL2. Communications of the ACM, 54(3), 95-104. doi:10.1145/1897852.1897877

Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., … Stanley, K. S. (2005). An overview of the Trilinos project. ACM Transactions on Mathematical Software, 31(3), 397-423. doi:10.1145/1089014.1089021

Hoffmann, G. A., Trivedi, K. S., & Malek, M. (2007). A Best Practice Guide to Resource Forecasting for Computing Systems. IEEE Transactions on Reliability, 56(4), 615-628. doi:10.1109/tr.2007.909764

Hsiao, M. Y., Carter, W. C., Thomas, J. W., & Stringfellow, W. R. (1981). Reliability, Availability, and Serviceability of IBM Computer Systems: A Quarter Century of Progress. IBM Journal of Research and Development, 25(5), 453-468. doi:10.1147/rd.255.0453

Hughes, G. F., Murray, J. F., Kreutz-Delgado, K., & Elkan, C. (2002). Improved disk-drive failure warnings. IEEE Transactions on Reliability, 51(3), 350-357. doi:10.1109/tr.2002.802886

S. Hukerikar and C. Engelmann. 2017. Resilience design patterns: A structured approach to resilience at extreme scale. Supercomput. Front. Innov. 4 3 (2017). DOI:https://doi.org/10.14529/jsfi170301 S. Hukerikar and C. Engelmann. 2017. Resilience design patterns: A structured approach to resilience at extreme scale. Supercomput. Front. Innov. 4 3 (2017). DOI:https://doi.org/10.14529/jsfi170301

Hussain, H., Malik, S. U. R., Hameed, A., Khan, S. U., Bickler, G., Min-Allah, N., … Rayes, A. (2013). A survey on resource allocation in high performance distributed computing systems. Parallel Computing, 39(11), 709-736. doi:10.1016/j.parco.2013.09.009

Intel Corporation. [n.d.]. Intel Xeon Processor E7 Family: Reliability Availability and Serviceability. White paper. https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-family-ras-server-paper.html. Intel Corporation. [n.d.]. Intel Xeon Processor E7 Family: Reliability Availability and Serviceability. White paper. https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-family-ras-server-paper.html.

Jha, S., Formicola, V., Martino, C. D., Dalton, M., Kramer, W. T., Kalbarczyk, Z., & Iyer, R. K. (2018). Resiliency of HPC Interconnects: A Case Study of Interconnect Failures and Recovery in Blue Waters. IEEE Transactions on Dependable and Secure Computing, 15(6), 915-930. doi:10.1109/tdsc.2017.2737537

Kiciman, E., & Fox, A. (2005). Detecting Application-Level Failures in Component-Based Internet Services. IEEE Transactions on Neural Networks, 16(5), 1027-1041. doi:10.1109/tnn.2005.853411

Kim, T., Sun, Z., Cook, C., Zhao, H., Li, R., Wong, D., & Tan, S. X.-D. (2016). Invited - Cross-layer modeling and optimization for electromigration induced reliability. Proceedings of the 53rd Annual Design Automation Conference. doi:10.1145/2897937.2905010

Kurowski, K., Oleksiak, A., Piątek, W., Piontek, T., Przybyszewski, A., & Węglarz, J. (2013). DCworms – A tool for simulation of energy efficiency in distributed computing infrastructures. Simulation Modelling Practice and Theory, 39, 135-151. doi:10.1016/j.simpat.2013.08.007

Langou, J., Chen, Z., Bosilca, G., & Dongarra, J. (2008). Recovery Patterns for Iterative Methods in a Parallel Unstable Environment. SIAM Journal on Scientific Computing, 30(1), 102-116. doi:10.1137/040620394

J. C. Laprie (Ed.). 1995. Dependability—Its Attributes Impairments and Means. Springer-Verlag Berlin. J. C. Laprie (Ed.). 1995. Dependability—Its Attributes Impairments and Means. Springer-Verlag Berlin.

Laprie, J.-C. (s. f.). DEPENDABLE COMPUTING AND FAULT TOLERANCE : CONCEPTS AND TERMINOLOGY. Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’. doi:10.1109/ftcsh.1995.532603

Lasance, C. J. M. (2003). Thermally driven reliability issues in microelectronic systems: status-quo and challenges. Microelectronics Reliability, 43(12), 1969-1974. doi:10.1016/s0026-2714(03)00183-5

Yinglung Liang, Yanyong Zhang, Sivasubramaniam, A., Jette, M., & Sahoo, R. (s. f.). BlueGene/L Failure Analysis and Prediction Models. International Conference on Dependable Systems and Networks (DSN’06). doi:10.1109/dsn.2006.18

Lin, T.-T. Y., & Siewiorek, D. P. (1990). Error log analysis: statistical modeling and heuristic trend analysis. IEEE Transactions on Reliability, 39(4), 419-432. doi:10.1109/24.58720

Losada, N., González, P., Martín, M. J., Bosilca, G., Bouteiller, A., & Teranishi, K. (2020). Fault tolerance of MPI applications in exascale systems: The ULFM solution. Future Generation Computer Systems, 106, 467-481. doi:10.1016/j.future.2020.01.026

Lyons, R. E., & Vanderkulk, W. (1962). The Use of Triple-Modular Redundancy to Improve Computer Reliability. IBM Journal of Research and Development, 6(2), 200-209. doi:10.1147/rd.62.0200

M. Médard and S. S. Lumetta. 2003. Network Reliability and Fault Tolerance. American Cancer Society. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471219282.eot281. M. Médard and S. S. Lumetta. 2003. Network Reliability and Fault Tolerance. American Cancer Society. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471219282.eot281.

Moody, A., Bronevetsky, G., Mohror, K., & de Supinski, B. (2010). Detailed Modeling, Design, and Evaluation of a Scalable Multi-level Checkpointing System. doi:10.2172/984082

Moor Insights 8 Strategy. 2017. AMD EPYC Brings New RAS Capability. White paper. Retrieved from https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf. Moor Insights 8 Strategy. 2017. AMD EPYC Brings New RAS Capability. White paper. Retrieved from https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf.

Mulas, F., Atienza, D., Acquaviva, A., Carta, S., Benini, L., & De Micheli, G. (2009). Thermal Balancing Policy for Multiprocessor Stream Computing Platforms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(12), 1870-1882. doi:10.1109/tcad.2009.2032372

Oleksiak, A., Kierzynka, M., Piatek, W., Agosta, G., Barenghi, A., Brandolese, C., … Janssen, U. (2017). M2DC – Modular Microserver DataCentre with heterogeneous hardware. Microprocessors and Microsystems, 52, 117-130. doi:10.1016/j.micpro.2017.05.019

Oxley, M. A., Jonardi, E., Pasricha, S., Maciejewski, A. A., Siegel, H. J., Burns, P. J., & Koenig, G. A. (2018). Rate-based thermal, power, and co-location aware resource management for heterogeneous data centers. Journal of Parallel and Distributed Computing, 112, 126-139. doi:10.1016/j.jpdc.2017.04.015

K. O’brien I. Pietri R. Reddy A. Lastovetsky and R. Sakellariou. 2017. A survey of power and energy predictive models in HPC systems and applications. ACM Comput. Surv. 50 3 Article 37 (June 2017) 38 pages. DOI:https://doi.org/10.1145/3078811 K. O’brien I. Pietri R. Reddy A. Lastovetsky and R. Sakellariou. 2017. A survey of power and energy predictive models in HPC systems and applications. ACM Comput. Surv. 50 3 Article 37 (June 2017) 38 pages. DOI:https://doi.org/10.1145/3078811

Park, S.-M., & Humphrey, M. (2011). Predictable High-Performance Computing Using Feedback Control and Admission Control. IEEE Transactions on Parallel and Distributed Systems, 22(3), 396-411. doi:10.1109/tpds.2010.100

Pfefferman, J. D., & Cernuschi-Frias, B. (2002). A nonparametric nonstationary procedure for failure prediction. IEEE Transactions on Reliability, 51(4), 434-442. doi:10.1109/tr.2002.804733

Rangan, K. K., Wei, G.-Y., & Brooks, D. (2009). Thread motion. ACM SIGARCH Computer Architecture News, 37(3), 302-313. doi:10.1145/1555815.1555793

Paolo Rech. [n.d.]. Reliability Issues in Current and Future Supercomputers. Retrieved from http://energysfe.ufsc.br/slides/Paolo-Rech-260917.pdf. Paolo Rech. [n.d.]. Reliability Issues in Current and Future Supercomputers. Retrieved from http://energysfe.ufsc.br/slides/Paolo-Rech-260917.pdf.

F. Reghenzani G. Massari and W. Fornaciari. 2019. The real-time Linux kernel: A survey on PREEMPT_RT. Comput. Surveys 52 1 Article 18 (Feb. 2019) 36 pages. DOI:https://doi.org/10.1145/3297714 F. Reghenzani G. Massari and W. Fornaciari. 2019. The real-time Linux kernel: A survey on PREEMPT_RT. Comput. Surveys 52 1 Article 18 (Feb. 2019) 36 pages. DOI:https://doi.org/10.1145/3297714

F. Salfner M. Lenk and M. Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42 3 Article 10 (March 2010) 42 pages. DOI:https://doi.org/10.1145/1670679.1670680 F. Salfner M. Lenk and M. Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42 3 Article 10 (March 2010) 42 pages. DOI:https://doi.org/10.1145/1670679.1670680

Salfner, F., Schieschke, M., & Malek, M. (2006). Predicting failures of computer systems: a case study for a telecommunication system. Proceedings 20th IEEE International Parallel & Distributed Processing Symposium. doi:10.1109/ipdps.2006.1639672

Shi, L., Chen, H., Sun, J., & Li, K. (2012). vCUDA: GPU-Accelerated High-Performance Computing in Virtual Machines. IEEE Transactions on Computers, 61(6), 804-816. doi:10.1109/tc.2011.112

D. P. Siewiorek and R. S. Swarz. 1998. Reliable Computer Systems 3rd ed. A. K. Peters Ltd. D. P. Siewiorek and R. S. Swarz. 1998. Reliable Computer Systems 3rd ed. A. K. Peters Ltd.

Singh, S., & Chana, I. (2016). A Survey on Resource Scheduling in Cloud Computing: Issues and Challenges. Journal of Grid Computing, 14(2), 217-264. doi:10.1007/s10723-015-9359-2

Slegel, T. J., Averill, R. M., Check, M. A., Giamei, B. C., Krumm, B. W., Krygowski, C. A., … Webb, C. F. (1999). IBM’s S/390 G5 microprocessor design. IEEE Micro, 19(2), 12-23. doi:10.1109/40.755464

Sridhar, A., Sabry, M. M., & Atienza, D. (2014). A Semi-Analytical Thermal Modeling Framework for Liquid-Cooled ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(8), 1145-1158. doi:10.1109/tcad.2014.2323194

Sridharan, V., DeBardeleben, N., Blanchard, S., Ferreira, K. B., Stearley, J., Shalf, J., & Gurumurthi, S. (2015). Memory Errors in Modern Systems. ACM SIGARCH Computer Architecture News, 43(1), 297-310. doi:10.1145/2786763.2694348

Stathis, J. H. (2018). The physics of NBTI: What do we really know? 2018 IEEE International Reliability Physics Symposium (IRPS). doi:10.1109/irps.2018.8353539

Stellner, G. (s. f.). CoCheck: checkpointing and process migration for MPI. Proceedings of International Conference on Parallel Processing. doi:10.1109/ipps.1996.508106

Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems. Computing in Science & Engineering, 12(3), 66-73. doi:10.1109/mcse.2010.69

Subasi, O., Di, S., Bautista-Gomez, L., Balaprakash, P., Unsal, O., Labarta, J., … Cappello, F. (2018). Exploring the capabilities of support vector machines in detecting silent data corruptions. Sustainable Computing: Informatics and Systems, 19, 277-290. doi:10.1016/j.suscom.2018.01.004

Tang, D., & Iyer, R. K. (1993). Dependability measurement and modeling of a multicomputer system. IEEE Transactions on Computers, 42(1), 62-75. doi:10.1109/12.192214

D. Turnbull and N. Alldrin. 2003. Failure Prediction in Hardware Systems. Tech. rep. University of California San Diego CA. Retrieved from http://www.cs.ucsd.edu/ dturnbul/Papers/ServerPrediction.pdf. D. Turnbull and N. Alldrin. 2003. Failure Prediction in Hardware Systems. Tech. rep. University of California San Diego CA. Retrieved from http://www.cs.ucsd.edu/ dturnbul/Papers/ServerPrediction.pdf.

Vilalta, R., Apte, C. V., Hellerstein, J. L., Ma, S., & Weiss, S. M. (2002). Predictive algorithms in the management of computer systems. IBM Systems Journal, 41(3), 461-474. doi:10.1147/sj.413.0461

Vinoski, S. (2007). Reliability with Erlang. IEEE Internet Computing, 11(6), 79-81. doi:10.1109/mic.2007.132

Ward, A., Glynn, P., & Richardson, K. (1998). Internet service performance failure detection. ACM SIGMETRICS Performance Evaluation Review, 26(3), 38-43. doi:10.1145/306225.306237

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., … Stenström, P. (2008). The worst-case execution-time problem—overview of methods and survey of tools. ACM Transactions on Embedded Computing Systems, 7(3), 1-53. doi:10.1145/1347375.1347389

E. Yilmaz and L. Gilly. 2012. Redundancy and Reliability for an HPC Data Centre. Retrieved from http://www.prace-ri.eu/IMG/pdf/HPC-Centre-Redundancy-Reliability-WhitePaper.pdf. E. Yilmaz and L. Gilly. 2012. Redundancy and Reliability for an HPC Data Centre. Retrieved from http://www.prace-ri.eu/IMG/pdf/HPC-Centre-Redundancy-Reliability-WhitePaper.pdf.

Yuan, Z., Liu, Y., Li, J., Hu, J., Xue, C. J., & Yang, H. (2017). CP-FPGA: Energy-Efficient Nonvolatile FPGA With Offline/Online Checkpointing Optimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(7), 2153-2163. doi:10.1109/tvlsi.2017.2680464

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem