- -

Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Canal, Ramon es_ES
dc.contributor.author Hernández Luz, Carles es_ES
dc.contributor.author Tornero-Gavilá, Rafael es_ES
dc.contributor.author Cilardo, Alessandro es_ES
dc.contributor.author Massari, Giuseppe es_ES
dc.contributor.author Reghenzani, Federico es_ES
dc.contributor.author Fornaciari, William es_ES
dc.contributor.author Zapater, Marina es_ES
dc.contributor.author Atienza, David es_ES
dc.contributor.author Oleksiak, Ariel es_ES
dc.contributor.author Piatek, Wojciech es_ES
dc.contributor.author Abella, Jaume es_ES
dc.date.accessioned 2021-05-29T03:33:18Z
dc.date.available 2021-05-29T03:33:18Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 0360-0300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166962
dc.description © ACM, 2020. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. https://doi.org/10.1145/3403956 es_ES
dc.description.abstract [EN] Performance and power constraints come together with Complementary Metal Oxide Semiconductor technology scaling in future Exascale systems. Technology scaling makes each individual transistor more prone to faults and, due to the exponential increase in the number of devices per chip, to higher system fault rates. Consequently, High-performance Computing (HPC) systems need to integrate prediction, detection, and recovery mechanisms to cope with faults efficiently. This article reviews fault detection, fault prediction, and recovery techniques in HPC systems, from electronics to system level. We analyze their strengths and limitations. Finally, we identify the promising paths to meet the reliability levels of Exascale systems. es_ES
dc.description.sponsorship This work has received funding from the European Union's Horizon 2020 (H2020) research and innovation program under the FET-HPC Grant Agreement No. 801137 (RECIPE). Jaume Abella was also partially supported by the Ministry of Economy and Competitiveness of Spain under Contract No. TIN2015-65316-P and under Ramon y Cajal Postdoctoral Fellowship No. RYC-2013-14717, as well as by the HiPEAC Network of Excellence. Ramon Canal is partially supported by the Generalitat de Catalunya under Contract No. 2017SGR0962. es_ES
dc.language Inglés es_ES
dc.publisher Association for Computing Machinery es_ES
dc.relation.ispartof ACM Computing Surveys es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HPC es_ES
dc.subject Supercomputing es_ES
dc.subject Exascale es_ES
dc.subject Reliability es_ES
dc.subject Prediction es_ES
dc.subject Survey es_ES
dc.subject Faults es_ES
dc.subject Failures es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1145/3403956 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/801137/EU/REliable power and time-ConstraInts-aware Predictive management of heterogeneous Exascale systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2013-14717/ES/RYC-2013-14717/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-65316-P/ES/COMPUTACION DE ALTAS PRESTACIONES VII/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2017 SGR 0962/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Canal, R.; Hernández Luz, C.; Tornero-Gavilá, R.; Cilardo, A.; Massari, G.; Reghenzani, F.; Fornaciari, W.... (2020). Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives. ACM Computing Surveys. 53(5):1-32. https://doi.org/10.1145/3403956 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1145/3403956 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 32 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\431095 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder HiPEAC Network of Excellence es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abella, J., Hernandez, C., Quinones, E., Cazorla, F. J., Conmy, P. R., Azkarate-askasua, M., … Vardanega, T. (2015). WCET analysis methods: Pitfalls and challenges on their trustworthiness. 10th IEEE International Symposium on Industrial Embedded Systems (SIES). doi:10.1109/sies.2015.7185039 es_ES
dc.description.references E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324. E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324. es_ES
dc.description.references Agullo, E., Giraud, L., Salas, P., & Zounon, M. (2016). Interpolation-Restart Strategies for Resilient Eigensolvers. SIAM Journal on Scientific Computing, 38(5), C560-C583. doi:10.1137/15m1042115 es_ES
dc.description.references Al-Qawasmeh, A. M., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2015). Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers. IEEE Transactions on Computers, 64(2), 477-491. doi:10.1109/tc.2013.116 es_ES
dc.description.references ARM. 2017. ARM Reliability Availability and Serviceability (RAS) Specification—ARMv8 for the ARMv8-A Architecture Profile. White paper. Retrieved from https://developer.arm.com/docs/ddi0587/latest. ARM. 2017. ARM Reliability Availability and Serviceability (RAS) Specification—ARMv8 for the ARMv8-A Architecture Profile. White paper. Retrieved from https://developer.arm.com/docs/ddi0587/latest. es_ES
dc.description.references Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11-33. doi:10.1109/tdsc.2004.2 es_ES
dc.description.references Bautista-Gomez, L., Zyulkyarov, F., Unsal, O., & McIntosh-Smith, S. (2016). Unprotected Computing: A Large-Scale Study of DRAM Raw Error Rate on a Supercomputer. SC16: International Conference for High Performance Computing, Networking, Storage and Analysis. doi:10.1109/sc.2016.54 es_ES
dc.description.references Berrocal, E., Bautista-Gomez, L., Di, S., Lan, Z., & Cappello, F. (2017). Toward General Software Level Silent Data Corruption Detection for Parallel Applications. IEEE Transactions on Parallel and Distributed Systems, 28(12), 3642-3655. doi:10.1109/tpds.2017.2735971 es_ES
dc.description.references M.-A. Breuer and A. D. Friedman. 1976. Diagnosis 8 Reliable Design of Digital Systems. Springer. M.-A. Breuer and A. D. Friedman. 1976. Diagnosis 8 Reliable Design of Digital Systems. Springer. es_ES
dc.description.references P. Bridges K. Ferreira M. Heroux and M. Hoemmen. 2012. Fault-tolerant linear solvers via selective reliability. ArXiv e-prints June 2012. arXiv:1206.1390 [math.NA]. P. Bridges K. Ferreira M. Heroux and M. Hoemmen. 2012. Fault-tolerant linear solvers via selective reliability. ArXiv e-prints June 2012. arXiv:1206.1390 [math.NA]. es_ES
dc.description.references F. Cappello A. Geist W. Gropp S. Kale B. Kramer and M. Snir. 2014. Toward exascale resilience: 2014 update. Supercomput. Front. Innovat. 1 1 (2014). http://superfri.org/superfri/article/view/14. F. Cappello A. Geist W. Gropp S. Kale B. Kramer and M. Snir. 2014. Toward exascale resilience: 2014 update. Supercomput. Front. Innovat. 1 1 (2014). http://superfri.org/superfri/article/view/14. es_ES
dc.description.references F. J. Cazorla L. Kosmidis E. Mezzetti C. Hernandez J. Abella and T. Vardanega. 2019. Probabilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Comput. Surv. 52 1 Article 14 (Feb. 2019) 35 pages. DOI:https://doi.org/10.1145/3301283 F. J. Cazorla L. Kosmidis E. Mezzetti C. Hernandez J. Abella and T. Vardanega. 2019. Probabilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Comput. Surv. 52 1 Article 14 (Feb. 2019) 35 pages. DOI:https://doi.org/10.1145/3301283 es_ES
dc.description.references Chan, C. S., Pan, B., Gross, K., Vaidyanathan, K., & Rosing, T. Š. (2014). Correcting vibration-induced performance degradation in enterprise servers. ACM SIGMETRICS Performance Evaluation Review, 41(3), 83-88. doi:10.1145/2567529.2567555 es_ES
dc.description.references Chantem, T., Hu, X. S., & Dick, R. P. (2011). Temperature-Aware Scheduling and Assignment for Hard Real-Time Applications on MPSoCs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(10), 1884-1897. doi:10.1109/tvlsi.2010.2058873 es_ES
dc.description.references Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., & Brewer, E. (s. f.). Pinpoint: problem determination in large, dynamic Internet services. Proceedings International Conference on Dependable Systems and Networks. doi:10.1109/dsn.2002.1029005 es_ES
dc.description.references Chen, Z. (2011). Algorithm-based recovery for iterative methods without checkpointing. Proceedings of the 20th international symposium on High performance distributed computing - HPDC ’11. doi:10.1145/1996130.1996142 es_ES
dc.description.references Chen, Z. (2013). Online-ABFT. Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP ’13. doi:10.1145/2442516.2442533 es_ES
dc.description.references Coskun, A. K., Rosing, T. S., Mihic, K., De Micheli, G., & Leblebici, Y. (2006). Analysis and Optimization of MPSoC Reliability. Journal of Low Power Electronics, 2(1), 56-69. doi:10.1166/jolpe.2006.007 es_ES
dc.description.references G. Da Costa A. Oleksiak W. Piatek J. Salom and L. Sisó. 2015. Minimization of costs and energy consumption in a data center by a workload-based capacity management. In Energy Efficient Data Centers S. Klingert M. Chinnici and M. Rey Porto (Eds.). Springer International Publishing Cham 102--119. G. Da Costa A. Oleksiak W. Piatek J. Salom and L. Sisó. 2015. Minimization of costs and energy consumption in a data center by a workload-based capacity management. In Energy Efficient Data Centers S. Klingert M. Chinnici and M. Rey Porto (Eds.). Springer International Publishing Cham 102--119. es_ES
dc.description.references Cupertino, L., Da Costa, G., Oleksiak, A., Pia¸tek, W., Pierson, J.-M., Salom, J., … Zilio, T. (2015). Energy-efficient, thermal-aware modeling and simulation of data centers: The CoolEmAll approach and evaluation results. Ad Hoc Networks, 25, 535-553. doi:10.1016/j.adhoc.2014.11.002 es_ES
dc.description.references Dally, W. J. (1991). Express cubes: improving the performance of k-ary n-cube interconnection networks. IEEE Transactions on Computers, 40(9), 1016-1023. doi:10.1109/12.83652 es_ES
dc.description.references Dauwe, D., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2018). Resilience-Aware Resource Management for Exascale Computing Systems. IEEE Transactions on Sustainable Computing, 3(4), 332-345. doi:10.1109/tsusc.2018.2797890 es_ES
dc.description.references R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43 4 Article 35 (Oct. 2011) 44 pages. DOI:https://doi.org/10.1145/1978802.1978814 R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43 4 Article 35 (Oct. 2011) 44 pages. DOI:https://doi.org/10.1145/1978802.1978814 es_ES
dc.description.references Di, S., & Cappello, F. (2016). Adaptive Impact-Driven Detection of Silent Data Corruption for HPC Applications. IEEE Transactions on Parallel and Distributed Systems, 27(10), 2809-2823. doi:10.1109/tpds.2016.2517639 es_ES
dc.description.references Di, S., Guo, H., Gupta, R., Pershey, E. R., Snir, M., & Cappello, F. (2019). Exploring Properties and Correlations of Fatal Events in a Large-Scale HPC System. IEEE Transactions on Parallel and Distributed Systems, 30(2), 361-374. doi:10.1109/tpds.2018.2864184 es_ES
dc.description.references Di, S., Robert, Y., Vivien, F., & Cappello, F. (2017). Toward an Optimal Online Checkpoint Solution under a Two-Level HPC Checkpoint Model. IEEE Transactions on Parallel and Distributed Systems, 28(1), 244-259. doi:10.1109/tpds.2016.2546248 es_ES
dc.description.references J. Dongarra T. Herault and Y. Robert. 2015. Fault Tolerance Techniques for High-Performance Computing. Springer. J. Dongarra T. Herault and Y. Robert. 2015. Fault Tolerance Techniques for High-Performance Computing. Springer. es_ES
dc.description.references DOWNING, S., & SOCIE, D. (1982). Simple rainflow counting algorithms. International Journal of Fatigue, 4(1), 31-40. doi:10.1016/0142-1123(82)90018-4 es_ES
dc.description.references Eghbalkhah, B., Kamal, M., Afzali-Kusha, H., Afzali-Kusha, A., Ghaznavi-Ghoushchi, M. B., & Pedram, M. (2015). Workload and temperature dependent evaluation of BTI-induced lifetime degradation in digital circuits. Microelectronics Reliability, 55(8), 1152-1162. doi:10.1016/j.microrel.2015.06.004 es_ES
dc.description.references Gottscho, M., Shoaib, M., Govindan, S., Sharma, B., Wang, D., & Gupta, P. (2017). Measuring the Impact of Memory Errors on Application  Performance. IEEE Computer Architecture Letters, 16(1), 51-55. doi:10.1109/lca.2016.2599513 es_ES
dc.description.references Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., … Sengupta, S. (2011). VL2. Communications of the ACM, 54(3), 95-104. doi:10.1145/1897852.1897877 es_ES
dc.description.references Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., … Stanley, K. S. (2005). An overview of the Trilinos project. ACM Transactions on Mathematical Software, 31(3), 397-423. doi:10.1145/1089014.1089021 es_ES
dc.description.references Hoffmann, G. A., Trivedi, K. S., & Malek, M. (2007). A Best Practice Guide to Resource Forecasting for Computing Systems. IEEE Transactions on Reliability, 56(4), 615-628. doi:10.1109/tr.2007.909764 es_ES
dc.description.references Hsiao, M. Y., Carter, W. C., Thomas, J. W., & Stringfellow, W. R. (1981). Reliability, Availability, and Serviceability of IBM Computer Systems: A Quarter Century of Progress. IBM Journal of Research and Development, 25(5), 453-468. doi:10.1147/rd.255.0453 es_ES
dc.description.references Hughes, G. F., Murray, J. F., Kreutz-Delgado, K., & Elkan, C. (2002). Improved disk-drive failure warnings. IEEE Transactions on Reliability, 51(3), 350-357. doi:10.1109/tr.2002.802886 es_ES
dc.description.references S. Hukerikar and C. Engelmann. 2017. Resilience design patterns: A structured approach to resilience at extreme scale. Supercomput. Front. Innov. 4 3 (2017). DOI:https://doi.org/10.14529/jsfi170301 S. Hukerikar and C. Engelmann. 2017. Resilience design patterns: A structured approach to resilience at extreme scale. Supercomput. Front. Innov. 4 3 (2017). DOI:https://doi.org/10.14529/jsfi170301 es_ES
dc.description.references Hussain, H., Malik, S. U. R., Hameed, A., Khan, S. U., Bickler, G., Min-Allah, N., … Rayes, A. (2013). A survey on resource allocation in high performance distributed computing systems. Parallel Computing, 39(11), 709-736. doi:10.1016/j.parco.2013.09.009 es_ES
dc.description.references Intel Corporation. [n.d.]. Intel Xeon Processor E7 Family: Reliability Availability and Serviceability. White paper. https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-family-ras-server-paper.html. Intel Corporation. [n.d.]. Intel Xeon Processor E7 Family: Reliability Availability and Serviceability. White paper. https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-family-ras-server-paper.html. es_ES
dc.description.references Jha, S., Formicola, V., Martino, C. D., Dalton, M., Kramer, W. T., Kalbarczyk, Z., & Iyer, R. K. (2018). Resiliency of HPC Interconnects: A Case Study of Interconnect Failures and Recovery in Blue Waters. IEEE Transactions on Dependable and Secure Computing, 15(6), 915-930. doi:10.1109/tdsc.2017.2737537 es_ES
dc.description.references Kiciman, E., & Fox, A. (2005). Detecting Application-Level Failures in Component-Based Internet Services. IEEE Transactions on Neural Networks, 16(5), 1027-1041. doi:10.1109/tnn.2005.853411 es_ES
dc.description.references Kim, T., Sun, Z., Cook, C., Zhao, H., Li, R., Wong, D., & Tan, S. X.-D. (2016). Invited - Cross-layer modeling and optimization for electromigration induced reliability. Proceedings of the 53rd Annual Design Automation Conference. doi:10.1145/2897937.2905010 es_ES
dc.description.references Kurowski, K., Oleksiak, A., Piątek, W., Piontek, T., Przybyszewski, A., & Węglarz, J. (2013). DCworms – A tool for simulation of energy efficiency in distributed computing infrastructures. Simulation Modelling Practice and Theory, 39, 135-151. doi:10.1016/j.simpat.2013.08.007 es_ES
dc.description.references Langou, J., Chen, Z., Bosilca, G., & Dongarra, J. (2008). Recovery Patterns for Iterative Methods in a Parallel Unstable Environment. SIAM Journal on Scientific Computing, 30(1), 102-116. doi:10.1137/040620394 es_ES
dc.description.references J. C. Laprie (Ed.). 1995. Dependability—Its Attributes Impairments and Means. Springer-Verlag Berlin. J. C. Laprie (Ed.). 1995. Dependability—Its Attributes Impairments and Means. Springer-Verlag Berlin. es_ES
dc.description.references Laprie, J.-C. (s. f.). DEPENDABLE COMPUTING AND FAULT TOLERANCE : CONCEPTS AND TERMINOLOGY. Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’. doi:10.1109/ftcsh.1995.532603 es_ES
dc.description.references Lasance, C. J. M. (2003). Thermally driven reliability issues in microelectronic systems: status-quo and challenges. Microelectronics Reliability, 43(12), 1969-1974. doi:10.1016/s0026-2714(03)00183-5 es_ES
dc.description.references Yinglung Liang, Yanyong Zhang, Sivasubramaniam, A., Jette, M., & Sahoo, R. (s. f.). BlueGene/L Failure Analysis and Prediction Models. International Conference on Dependable Systems and Networks (DSN’06). doi:10.1109/dsn.2006.18 es_ES
dc.description.references Lin, T.-T. Y., & Siewiorek, D. P. (1990). Error log analysis: statistical modeling and heuristic trend analysis. IEEE Transactions on Reliability, 39(4), 419-432. doi:10.1109/24.58720 es_ES
dc.description.references Losada, N., González, P., Martín, M. J., Bosilca, G., Bouteiller, A., & Teranishi, K. (2020). Fault tolerance of MPI applications in exascale systems: The ULFM solution. Future Generation Computer Systems, 106, 467-481. doi:10.1016/j.future.2020.01.026 es_ES
dc.description.references Lyons, R. E., & Vanderkulk, W. (1962). The Use of Triple-Modular Redundancy to Improve Computer Reliability. IBM Journal of Research and Development, 6(2), 200-209. doi:10.1147/rd.62.0200 es_ES
dc.description.references M. Médard and S. S. Lumetta. 2003. Network Reliability and Fault Tolerance. American Cancer Society. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471219282.eot281. M. Médard and S. S. Lumetta. 2003. Network Reliability and Fault Tolerance. American Cancer Society. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471219282.eot281. es_ES
dc.description.references Moody, A., Bronevetsky, G., Mohror, K., & de Supinski, B. (2010). Detailed Modeling, Design, and Evaluation of a Scalable Multi-level Checkpointing System. doi:10.2172/984082 es_ES
dc.description.references Moor Insights 8 Strategy. 2017. AMD EPYC Brings New RAS Capability. White paper. Retrieved from https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf. Moor Insights 8 Strategy. 2017. AMD EPYC Brings New RAS Capability. White paper. Retrieved from https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf. es_ES
dc.description.references Mulas, F., Atienza, D., Acquaviva, A., Carta, S., Benini, L., & De Micheli, G. (2009). Thermal Balancing Policy for Multiprocessor Stream Computing Platforms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(12), 1870-1882. doi:10.1109/tcad.2009.2032372 es_ES
dc.description.references Oleksiak, A., Kierzynka, M., Piatek, W., Agosta, G., Barenghi, A., Brandolese, C., … Janssen, U. (2017). M2DC – Modular Microserver DataCentre with heterogeneous hardware. Microprocessors and Microsystems, 52, 117-130. doi:10.1016/j.micpro.2017.05.019 es_ES
dc.description.references Oxley, M. A., Jonardi, E., Pasricha, S., Maciejewski, A. A., Siegel, H. J., Burns, P. J., & Koenig, G. A. (2018). Rate-based thermal, power, and co-location aware resource management for heterogeneous data centers. Journal of Parallel and Distributed Computing, 112, 126-139. doi:10.1016/j.jpdc.2017.04.015 es_ES
dc.description.references K. O’brien I. Pietri R. Reddy A. Lastovetsky and R. Sakellariou. 2017. A survey of power and energy predictive models in HPC systems and applications. ACM Comput. Surv. 50 3 Article 37 (June 2017) 38 pages. DOI:https://doi.org/10.1145/3078811 K. O’brien I. Pietri R. Reddy A. Lastovetsky and R. Sakellariou. 2017. A survey of power and energy predictive models in HPC systems and applications. ACM Comput. Surv. 50 3 Article 37 (June 2017) 38 pages. DOI:https://doi.org/10.1145/3078811 es_ES
dc.description.references Park, S.-M., & Humphrey, M. (2011). Predictable High-Performance Computing Using Feedback Control and Admission Control. IEEE Transactions on Parallel and Distributed Systems, 22(3), 396-411. doi:10.1109/tpds.2010.100 es_ES
dc.description.references Pfefferman, J. D., & Cernuschi-Frias, B. (2002). A nonparametric nonstationary procedure for failure prediction. IEEE Transactions on Reliability, 51(4), 434-442. doi:10.1109/tr.2002.804733 es_ES
dc.description.references Rangan, K. K., Wei, G.-Y., & Brooks, D. (2009). Thread motion. ACM SIGARCH Computer Architecture News, 37(3), 302-313. doi:10.1145/1555815.1555793 es_ES
dc.description.references Paolo Rech. [n.d.]. Reliability Issues in Current and Future Supercomputers. Retrieved from http://energysfe.ufsc.br/slides/Paolo-Rech-260917.pdf. Paolo Rech. [n.d.]. Reliability Issues in Current and Future Supercomputers. Retrieved from http://energysfe.ufsc.br/slides/Paolo-Rech-260917.pdf. es_ES
dc.description.references F. Reghenzani G. Massari and W. Fornaciari. 2019. The real-time Linux kernel: A survey on PREEMPT_RT. Comput. Surveys 52 1 Article 18 (Feb. 2019) 36 pages. DOI:https://doi.org/10.1145/3297714 F. Reghenzani G. Massari and W. Fornaciari. 2019. The real-time Linux kernel: A survey on PREEMPT_RT. Comput. Surveys 52 1 Article 18 (Feb. 2019) 36 pages. DOI:https://doi.org/10.1145/3297714 es_ES
dc.description.references F. Salfner M. Lenk and M. Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42 3 Article 10 (March 2010) 42 pages. DOI:https://doi.org/10.1145/1670679.1670680 F. Salfner M. Lenk and M. Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42 3 Article 10 (March 2010) 42 pages. DOI:https://doi.org/10.1145/1670679.1670680 es_ES
dc.description.references Salfner, F., Schieschke, M., & Malek, M. (2006). Predicting failures of computer systems: a case study for a telecommunication system. Proceedings 20th IEEE International Parallel & Distributed Processing Symposium. doi:10.1109/ipdps.2006.1639672 es_ES
dc.description.references Shi, L., Chen, H., Sun, J., & Li, K. (2012). vCUDA: GPU-Accelerated High-Performance Computing in Virtual Machines. IEEE Transactions on Computers, 61(6), 804-816. doi:10.1109/tc.2011.112 es_ES
dc.description.references D. P. Siewiorek and R. S. Swarz. 1998. Reliable Computer Systems 3rd ed. A. K. Peters Ltd. D. P. Siewiorek and R. S. Swarz. 1998. Reliable Computer Systems 3rd ed. A. K. Peters Ltd. es_ES
dc.description.references Singh, S., & Chana, I. (2016). A Survey on Resource Scheduling in Cloud Computing: Issues and Challenges. Journal of Grid Computing, 14(2), 217-264. doi:10.1007/s10723-015-9359-2 es_ES
dc.description.references Slegel, T. J., Averill, R. M., Check, M. A., Giamei, B. C., Krumm, B. W., Krygowski, C. A., … Webb, C. F. (1999). IBM’s S/390 G5 microprocessor design. IEEE Micro, 19(2), 12-23. doi:10.1109/40.755464 es_ES
dc.description.references Sridhar, A., Sabry, M. M., & Atienza, D. (2014). A Semi-Analytical Thermal Modeling Framework for Liquid-Cooled ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(8), 1145-1158. doi:10.1109/tcad.2014.2323194 es_ES
dc.description.references Sridharan, V., DeBardeleben, N., Blanchard, S., Ferreira, K. B., Stearley, J., Shalf, J., & Gurumurthi, S. (2015). Memory Errors in Modern Systems. ACM SIGARCH Computer Architecture News, 43(1), 297-310. doi:10.1145/2786763.2694348 es_ES
dc.description.references Stathis, J. H. (2018). The physics of NBTI: What do we really know? 2018 IEEE International Reliability Physics Symposium (IRPS). doi:10.1109/irps.2018.8353539 es_ES
dc.description.references Stellner, G. (s. f.). CoCheck: checkpointing and process migration for MPI. Proceedings of International Conference on Parallel Processing. doi:10.1109/ipps.1996.508106 es_ES
dc.description.references Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems. Computing in Science & Engineering, 12(3), 66-73. doi:10.1109/mcse.2010.69 es_ES
dc.description.references Subasi, O., Di, S., Bautista-Gomez, L., Balaprakash, P., Unsal, O., Labarta, J., … Cappello, F. (2018). Exploring the capabilities of support vector machines in detecting silent data corruptions. Sustainable Computing: Informatics and Systems, 19, 277-290. doi:10.1016/j.suscom.2018.01.004 es_ES
dc.description.references Tang, D., & Iyer, R. K. (1993). Dependability measurement and modeling of a multicomputer system. IEEE Transactions on Computers, 42(1), 62-75. doi:10.1109/12.192214 es_ES
dc.description.references D. Turnbull and N. Alldrin. 2003. Failure Prediction in Hardware Systems. Tech. rep. University of California San Diego CA. Retrieved from http://www.cs.ucsd.edu/ dturnbul/Papers/ServerPrediction.pdf. D. Turnbull and N. Alldrin. 2003. Failure Prediction in Hardware Systems. Tech. rep. University of California San Diego CA. Retrieved from http://www.cs.ucsd.edu/ dturnbul/Papers/ServerPrediction.pdf. es_ES
dc.description.references Vilalta, R., Apte, C. V., Hellerstein, J. L., Ma, S., & Weiss, S. M. (2002). Predictive algorithms in the management of computer systems. IBM Systems Journal, 41(3), 461-474. doi:10.1147/sj.413.0461 es_ES
dc.description.references Vinoski, S. (2007). Reliability with Erlang. IEEE Internet Computing, 11(6), 79-81. doi:10.1109/mic.2007.132 es_ES
dc.description.references Ward, A., Glynn, P., & Richardson, K. (1998). Internet service performance failure detection. ACM SIGMETRICS Performance Evaluation Review, 26(3), 38-43. doi:10.1145/306225.306237 es_ES
dc.description.references Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., … Stenström, P. (2008). The worst-case execution-time problem—overview of methods and survey of tools. ACM Transactions on Embedded Computing Systems, 7(3), 1-53. doi:10.1145/1347375.1347389 es_ES
dc.description.references E. Yilmaz and L. Gilly. 2012. Redundancy and Reliability for an HPC Data Centre. Retrieved from http://www.prace-ri.eu/IMG/pdf/HPC-Centre-Redundancy-Reliability-WhitePaper.pdf. E. Yilmaz and L. Gilly. 2012. Redundancy and Reliability for an HPC Data Centre. Retrieved from http://www.prace-ri.eu/IMG/pdf/HPC-Centre-Redundancy-Reliability-WhitePaper.pdf. es_ES
dc.description.references Yuan, Z., Liu, Y., Li, J., Hu, J., Xue, C. J., & Yang, H. (2017). CP-FPGA: Energy-Efficient Nonvolatile FPGA With Offline/Online Checkpointing Optimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(7), 2153-2163. doi:10.1109/tvlsi.2017.2680464 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem