- -

Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.contributor.author Lago-Sari, Rafael es_ES
dc.contributor.author Gaillard,Patrick es_ES
dc.date.accessioned 2021-05-29T03:33:29Z
dc.date.available 2021-05-29T03:33:29Z
dc.date.issued 2020-12-01 es_ES
dc.identifier.issn 0306-2619 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166963
dc.description.abstract [EN] The dual-mode dual-fuel (DMDF) strategy has been demonstrated to be a potential combustion mode to cover all the engine map with low-to-moderate NOx and soot emissions and high efficiency simultaneously. This can be accomplished by modifying the injection strategy to promote a fully premixed or a dual-fuel diffusive combustion depending on the operating conditions. The main limitation of the DMDF are the high concentrations of unburned hydrocarbons and carbon monoxide coupled with low exhaust temperatures, which can be a challenge for the stock diesel oxidation catalyst (DOC). Moreover, the use of a diffusive combustion combined with high EGR rates to avoid mechanical issues at high load enhances the soot formation, which can compromise the final soot levels in a homologation cycle. To evaluate these aspects, this work studies the performance and emissions of a DMDF truck concept along a WHVC and different in-service conformity cycles through vehicle systems simulations. For both types of cycles, five payloads were tested (0%, 25%, 50%, 75% and 100%) to evaluate the impact of this parameter on the operating points distribution inside the DMDF map. The first results show that the DMDF concept provides engine-out NOx levels below the EUVI regulation at normative payload (50%) with similar fuel consumption than the conventional diesel truck. On the other hand, the engine-out HC and CO emissions exceed their respective limits in all the cases, while the engine-out soot emissions only reach the EUVI levels up to 25% payload. By this reason, the stock DOC and diesel particulate filter from the conventional diesel truck were modelled and fitted to the DMDF truck model. The results evidenced that the use of these two ATS allows to achieve the EUVI limits in terms of tailpipe HC, CO and soot independently on the cycle and payload analyzed. Moreover, considering the tailpipe emissions values achieved with ATS at 50% payload, it can be inferred that both devices could be downsized for the DMDF application as compared to the conventional ATS for diesel applications. es_ES
dc.description.sponsorship The authors thanks ARAMCO Overseas Company and VOLVO Group Trucks Technology for supporting this research. The authors acknowledge European Regional Development Fund (FEDER) and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R). The authors also acknowledge the Universitat Polit`ecnica de Val`encia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Investigacion (SP20180148). The author R. Sari acknowledges the financial support from the Spanish ministry of science innovation and universities under the grant ``Ayudas para contratos predoctorales para la formaci ' on de doctores"(PRE2018-085043). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Dual-fuel combustion es_ES
dc.subject Driving cycle evaluation es_ES
dc.subject In-service conformity tests es_ES
dc.subject Aftertreatment system es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apenergy.2020.115729 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180148/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2018-085043/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation García Martínez, A.; Monsalve-Serrano, J.; Lago-Sari, R.; Gaillard, P. (2020). Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis. Applied Energy. 279:1-21. https://doi.org/10.1016/j.apenergy.2020.115729 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apenergy.2020.115729 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 279 es_ES
dc.relation.pasarela S\417442 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references COMMISSION REGULATION (EU) No 136/2014. Amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and Commission Regulation (EU) No 582/2011 as regards emissions from heavy duty vehicles (Euro VI); 11 February 2014. es_ES
dc.description.references Amba Prasad Rao, G., & Kaleemuddin, S. (2011). Development of variable timing fuel injection cam for effective abatement of diesel engine emissions. Applied Energy, 88(8), 2653-2662. doi:10.1016/j.apenergy.2011.02.011 es_ES
dc.description.references Agarwal AK, Dhar A, Gupta JG, Kim W, Lee C, Park S. Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine. Appl Energy, vol. 130, 2014, Pages 212-221, ISSN 0306-2619. es_ES
dc.description.references Prasad, B. V. V. S. U., Sharma, C. S., Anand, T. N. C., & Ravikrishna, R. V. (2011). High swirl-inducing piston bowls in small diesel engines for emission reduction. Applied Energy, 88(7), 2355-2367. doi:10.1016/j.apenergy.2010.12.068 es_ES
dc.description.references Russell, A., & Epling, W. S. (2011). Diesel Oxidation Catalysts. Catalysis Reviews, 53(4), 337-423. doi:10.1080/01614940.2011.596429 es_ES
dc.description.references Serrano JR, Bermudez V, Piqueras P, Angiolini E. Application of Pre-DPF water injection technique for pressure drop limitation. SAE Technical Paper 2015-01-0985. https://doi.org/10.4271/2015-01-0985. es_ES
dc.description.references Ettireddy PR, Kotrba A, Spinks T, Boningari T, Smirniotis P. Development of low temperature selective catalytic reduction (SCR) catalysts for future emissions regulations. SAE Technical Paper 2014-01-1520. https://doi.org/10.4271/2014-01-1520. es_ES
dc.description.references Henry C, Currier N, Ottinger N, Yezerets A. Decoupling the interactions of hydrocarbons and oxides of nitrogen over diesel oxidation catalysts. SAE Technical Paper 2011-01-1137. doi:10.4271/2011-01-1137. es_ES
dc.description.references Zhang J, Wong VW, Shuai S, Chen Y, Sappok A. Quantitative estimation of the impact of ash accumulation on diesel particulate filter related fuel penalty for a typical modern on-road heavy-duty diesel engine. Appl Energy 2018;229: 1010–1023, ISSN 0306-2619. es_ES
dc.description.references Payri F, Arnau FJ, Piqueras P, Ruiz M.J. Lumped approach for flow-through and wall-flow monolithic reactors modelling for real-time automotive applications. SAE Technical Paper 2018-01-0954; 2018, doi:10.4271/2018-01-0954. es_ES
dc.description.references Liang Z, Ma X, Lin H, Tang Y. The energy consumption and environmental impacts of SCR technology in China. Appl Energy 2011;88(4): 1120–1129, ISSN 0306-2619. es_ES
dc.description.references Pastor, J. V., García, A., Micó, C., & Lewiski, F. (2020). An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy, 260, 114238. doi:10.1016/j.apenergy.2019.114238 es_ES
dc.description.references Pan, J., Wei, H., Shu, G., Chen, Z., & Zhao, P. (2016). The role of low temperature chemistry in combustion mode development under elevated pressures. Combustion and Flame, 174, 179-193. doi:10.1016/j.combustflame.2016.09.012 es_ES
dc.description.references Lawler B, Splitter D, Szybist J, Kaul B. Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility. Appl Energy 2017;189: 122–132, ISSN 0306-2619. es_ES
dc.description.references Pachiannan T, Zhong W, Rajkumar S, He Z, Leng X, Wang Q. A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Appl Energy 2019;251: 113380, ISSN 0306-2619. es_ES
dc.description.references Krishnamoorthi, M., Malayalamurthi, R., He, Z., & Kandasamy, S. (2019). A review on low temperature combustion engines: Performance, combustion and emission characteristics. Renewable and Sustainable Energy Reviews, 116, 109404. doi:10.1016/j.rser.2019.109404 es_ES
dc.description.references Javier López J, García-Oliver JM, García A, Domenech V. Gasoline effects on spray characteristics, mixing and auto-ignition processes in a CI engine under Partially Premixed Combustion conditions. Appl Therm Eng 2014;70(1): 996–1006, ISSN 1359-4311. es_ES
dc.description.references Komninos NP, Rakopoulos CD. Heat transfer in hcci phenomenological simulation models: a review. Appl Energy 2016; 181: 179–209, ISSN 0306-2619. es_ES
dc.description.references Yousefi, A., Gharehghani, A., & Birouk, M. (2015). Comparison study on combustion characteristics and emissions of a homogeneous charge compression ignition (HCCI) engine with and without pre-combustion chamber. Energy Conversion and Management, 100, 232-241. doi:10.1016/j.enconman.2015.05.024 es_ES
dc.description.references Martins, M., Fischer, I., Gusberti, F., Sari, R., & Nora, M. D. (2017). HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine. SAE Technical Paper Series. doi:10.4271/2017-01-0733 es_ES
dc.description.references Hunicz, J., Mikulski, M., Geca, M. S., & Rybak, A. (2020). An applicable approach to mitigate pressure rise rate in an HCCI engine with negative valve overlap. Applied Energy, 257, 114018. doi:10.1016/j.apenergy.2019.114018 es_ES
dc.description.references Kokjohn SL, Hanson RM, Splitter DA, Reitz RD. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. Int J Engine Res 2011;12: 209-226. es_ES
dc.description.references Benajes J, Molina S, García A, Monsalve-Serrano J. Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Convers Manage 2015;99: 193-209, ISSN 0196-8904. es_ES
dc.description.references Benajes J, García A., Monsalve-Serrano J, Sari R. Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy 2018;157: 19–30. es_ES
dc.description.references Olmeda P, García A, Monsalve-Serrano J, Sari R. Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Appl Therm Eng 2018;144: 424-36, ISSN 1359-4311. es_ES
dc.description.references Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2016). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences, 7(1), 36. doi:10.3390/app7010036 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Sari, R. (2020). Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: Comparison to diesel-gasoline calibration. Energy Conversion and Management, 216, 112953. doi:10.1016/j.enconman.2020.112953 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Villalta, D., & Sari, R. (2019). Fuel sensitivity effects on dual-mode dual-fuel combustion operation for different octane numbers. Energy Conversion and Management, 201, 112137. doi:10.1016/j.enconman.2019.112137 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Villalta, D., & Sari, R. (2019). Octane number influence on combustion and performance parameters in a Dual-Mode Dual-Fuel engine. Fuel, 258, 116140. doi:10.1016/j.fuel.2019.116140 es_ES
dc.description.references García, A., Monsalve-Serrano, J., Villalta, D., Lago Sari, R., Gordillo Zavaleta, V., & Gaillard, P. (2019). Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept. Applied Energy, 253, 113622. doi:10.1016/j.apenergy.2019.113622 es_ES
dc.description.references Gong C, Yi L, Zhang Z, Sun J, Liu F. Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios. Appl Energy 2020; 261:114478, ISSN 0306-2619. es_ES
dc.description.references Gong C, Zhang Z, Sun J, Chen Y, Liu F. Computational study of nozzle spray-line distribution effects on stratified mixture formation, combustion and emissions of a high compression ratio DISI methanol engine under lean-burn condition. Energy 2020;205: 118080, ISSN 0360-5442. es_ES
dc.description.references Gong C, Sun J, Liu F. Numerical study of twin-spark plug arrangement effects on flame, combustion and emissions of a medium compression ratio direct-injection methanol engine. Fuel 2020;279: 118427, ISSN 0016-2361. es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016 es_ES
dc.description.references García A, Monsalve-Serrano J, Villalta D, Sari R. Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Convers Manage 2019;184: 327-37, ISSN 0196-8904. es_ES
dc.description.references Gong C, Lib Z, Yi L, Liu F. Comparative study on combustion and emissions between methanol portinjection engine and methanol direct-injection engine with H2-enriched port-injection under lean-burn conditions. Energy Convers Manage 2019;200, ISSN 0196-8904. es_ES
dc.description.references Gong C, Li Z, Yi L, Liu F. Experimental investigation of equivalence ratio effects on combustion and emissions characteristics of an H2/methanol dual-injection engine under different spark timings. Fuel 2020;262: 116463,ISSN 0016-2361. es_ES
dc.description.references Gong C, Li Z, Yi L, Huang K, Liu F. Research on the performance of a hydrogen/methanol dual-injection assisted spark-ignition engine using late-injection strategy for methanol. Fuel 2020; 260: 116403, ISSN 0016-2361. es_ES
dc.description.references Park Y, Bae C. Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine. Appl Energy 2014;133: 308–16, ISSN 0306-2619. es_ES
dc.description.references Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014 es_ES
dc.description.references AVL manufacturer manual. Smoke value measurement with the filter-papermethod. Application notes. June 2005 AT1007E, Rev. 02. Web:<https://www.avl.com/documents/10138/885893/Application+Notes >. es_ES
dc.description.references García A, Gil A, Monsalve-Serrano J, Sari R. OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy. Fuel 2020;275: 117898, ISSN 0016-2361. es_ES
dc.description.references Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064 es_ES
dc.description.references Turns S. An introduction to combustion: concepts and applications. McGraw-Hill Series in Mechanical Engineering, second edition; 2000. es_ES
dc.description.references Volvo trucks: Volvo FE: Available at< https://www.volvotrucks.com.au/en-au/trucks/volvo-fe.html accessed in 16/04/2020>. es_ES
dc.description.references Gamma Technologies: Vehicle Driveline and HEV Application Manual; 2018. es_ES
dc.description.references Luján J, García A, Monsalve-Serrano J, Martínez-Boggio S. Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Convers Manage 2019;199: 111987, ISSN 0196-8904. es_ES
dc.description.references COMMISSION REGULATION (EU) No 582/2011.Implementing and amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with respect to emissions from heavy duty vehicles (Euro VI) and amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council; 25 May 2011. es_ES
dc.description.references Sampara, C. S., Bissett, E. J., & Chmielewski, M. (2007). Global Kinetics for a Commercial Diesel Oxidation Catalyst with Two Exhaust Hydrocarbons. Industrial & Engineering Chemistry Research, 47(2), 311-322. doi:10.1021/ie070813x es_ES
dc.description.references Sampara, C. S., Bissett, E. J., Chmielewski, M., & Assanis, D. (2007). Global Kinetics for Platinum Diesel Oxidation Catalysts. Industrial & Engineering Chemistry Research, 46(24), 7993-8003. doi:10.1021/ie070642w es_ES
dc.description.references Silvis W. An Algorithm for Calculating the Air/Fuel Ratio from Exhaust Emissions. SAE Technical Paper 970514; 1997. es_ES
dc.description.references Gamma Technologies: Optimization Manual; 2018. es_ES
dc.description.references Wang Q, Wang B, Yao C, Liu M, Wu T, Wei H, Dou Z. Study on cyclic variability of dual fuel combustion in a methanol fumigated diesel engine. Fuel 2016;164: 99–109, ISSN 0016-236. es_ES
dc.description.references Macián V, Serrano JR, Piqueras P, Sanchis J. Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters. Energy 2019;179: 407-421, ISSN 0360-5442. es_ES
dc.description.references Payri, F., Arnau, F. J., Piqueras, P., & Ruiz, M. J. (2018). Lumped Approach for Flow-Through and Wall-Flow Monolithic Reactors Modelling for Real-Time Automotive Applications. SAE Technical Paper Series. doi:10.4271/2018-01-0954 es_ES
dc.description.references Pedrozo, V. B., May, I., Lanzanova, T. D. M., & Zhao, H. (2016). Potential of internal EGR and throttled operation for low load extension of ethanol–diesel dual-fuel reactivity controlled compression ignition combustion on a heavy-duty engine. Fuel, 179, 391-405. doi:10.1016/j.fuel.2016.03.090 es_ES
dc.description.references Heywood JB. Internal combustion engine fundamentals. McGraw-Hill, 2018, Second edition. es_ES
dc.description.references Gao, J., Tian, G., Sorniotti, A., Karci, A. E., & Di Palo, R. (2019). Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up. Applied Thermal Engineering, 147, 177-187. doi:10.1016/j.applthermaleng.2018.10.037 es_ES
dc.description.references Yang, S., Deng, C., Gao, Y., & He, Y. (2016). Diesel particulate filter design simulation: A review. Advances in Mechanical Engineering, 8(3), 168781401663732. doi:10.1177/1687814016637328 es_ES
dc.description.references Serrano J, Climent H, Piqueras P, Angiolini E. Filtration modelling in wall-flow particulate filters of low soot penetration thickness. Energy 2016;112: 883-898, ISSN 0360-5442. es_ES
dc.description.references Payri F, Broatch A, Serrano JR, Piqueras P. Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs). Energy 2011;36(12): 6731-6744, ISSN 0360-5442. es_ES
dc.description.references Bermúdez, V., Serrano, J., Piqueras, P., & Sanchis, E. (2017). On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Applied Sciences, 7(3), 234. doi:10.3390/app7030234 es_ES
dc.description.references Rößler, M., Velji, A., Janzer, C., Koch, T., & Olzmann, M. (2017). Formation of Engine Internal NO2: Measures to Control the NO2/NOX Ratio for Enhanced Exhaust After Treatment. SAE International Journal of Engines, 10(4), 1880-1893. doi:10.4271/2017-01-1017 es_ES
dc.description.references Singh, N., Rutland, C. J., Foster, D. E., Narayanaswamy, K., & He, Y. (2009). Investigation into Different DPF Regeneration Strategies Based on Fuel Economy Using Integrated System Simulation. SAE Technical Paper Series. doi:10.4271/2009-01-1275 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem