- -

Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis

Mostrar el registro completo del ítem

García Martínez, A.; Monsalve-Serrano, J.; Lago-Sari, R.; Gaillard, P. (2020). Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis. Applied Energy. 279:1-21. https://doi.org/10.1016/j.apenergy.2020.115729

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166963

Ficheros en el ítem

Metadatos del ítem

Título: Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis
Autor: García Martínez, Antonio Monsalve-Serrano, Javier Lago-Sari, Rafael Gaillard,Patrick
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] The dual-mode dual-fuel (DMDF) strategy has been demonstrated to be a potential combustion mode to cover all the engine map with low-to-moderate NOx and soot emissions and high efficiency simultaneously. This can be ...[+]
Palabras clave: Dual-fuel combustion , Driving cycle evaluation , In-service conformity tests , Aftertreatment system
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied Energy. (issn: 0306-2619 )
DOI: 10.1016/j.apenergy.2020.115729
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.apenergy.2020.115729
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/
info:eu-repo/grantAgreement/UPV//SP20180148/
info:eu-repo/grantAgreement/AEI//PRE2018-085043/
Agradecimientos:
The authors thanks ARAMCO Overseas Company and VOLVO Group Trucks Technology for supporting this research. The authors acknowledge European Regional Development Fund (FEDER) and Spanish Ministerio de Economia y Competitividad ...[+]
Tipo: Artículo

References

COMMISSION REGULATION (EU) No 136/2014. Amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and Commission Regulation (EU) No 582/2011 as regards emissions from heavy duty vehicles (Euro VI); 11 February 2014.

Amba Prasad Rao, G., & Kaleemuddin, S. (2011). Development of variable timing fuel injection cam for effective abatement of diesel engine emissions. Applied Energy, 88(8), 2653-2662. doi:10.1016/j.apenergy.2011.02.011

Agarwal AK, Dhar A, Gupta JG, Kim W, Lee C, Park S. Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine. Appl Energy, vol. 130, 2014, Pages 212-221, ISSN 0306-2619. [+]
COMMISSION REGULATION (EU) No 136/2014. Amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and Commission Regulation (EU) No 582/2011 as regards emissions from heavy duty vehicles (Euro VI); 11 February 2014.

Amba Prasad Rao, G., & Kaleemuddin, S. (2011). Development of variable timing fuel injection cam for effective abatement of diesel engine emissions. Applied Energy, 88(8), 2653-2662. doi:10.1016/j.apenergy.2011.02.011

Agarwal AK, Dhar A, Gupta JG, Kim W, Lee C, Park S. Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine. Appl Energy, vol. 130, 2014, Pages 212-221, ISSN 0306-2619.

Prasad, B. V. V. S. U., Sharma, C. S., Anand, T. N. C., & Ravikrishna, R. V. (2011). High swirl-inducing piston bowls in small diesel engines for emission reduction. Applied Energy, 88(7), 2355-2367. doi:10.1016/j.apenergy.2010.12.068

Russell, A., & Epling, W. S. (2011). Diesel Oxidation Catalysts. Catalysis Reviews, 53(4), 337-423. doi:10.1080/01614940.2011.596429

Serrano JR, Bermudez V, Piqueras P, Angiolini E. Application of Pre-DPF water injection technique for pressure drop limitation. SAE Technical Paper 2015-01-0985. https://doi.org/10.4271/2015-01-0985.

Ettireddy PR, Kotrba A, Spinks T, Boningari T, Smirniotis P. Development of low temperature selective catalytic reduction (SCR) catalysts for future emissions regulations. SAE Technical Paper 2014-01-1520. https://doi.org/10.4271/2014-01-1520.

Henry C, Currier N, Ottinger N, Yezerets A. Decoupling the interactions of hydrocarbons and oxides of nitrogen over diesel oxidation catalysts. SAE Technical Paper 2011-01-1137. doi:10.4271/2011-01-1137.

Zhang J, Wong VW, Shuai S, Chen Y, Sappok A. Quantitative estimation of the impact of ash accumulation on diesel particulate filter related fuel penalty for a typical modern on-road heavy-duty diesel engine. Appl Energy 2018;229: 1010–1023, ISSN 0306-2619.

Payri F, Arnau FJ, Piqueras P, Ruiz M.J. Lumped approach for flow-through and wall-flow monolithic reactors modelling for real-time automotive applications. SAE Technical Paper 2018-01-0954; 2018, doi:10.4271/2018-01-0954.

Liang Z, Ma X, Lin H, Tang Y. The energy consumption and environmental impacts of SCR technology in China. Appl Energy 2011;88(4): 1120–1129, ISSN 0306-2619.

Pastor, J. V., García, A., Micó, C., & Lewiski, F. (2020). An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy, 260, 114238. doi:10.1016/j.apenergy.2019.114238

Pan, J., Wei, H., Shu, G., Chen, Z., & Zhao, P. (2016). The role of low temperature chemistry in combustion mode development under elevated pressures. Combustion and Flame, 174, 179-193. doi:10.1016/j.combustflame.2016.09.012

Lawler B, Splitter D, Szybist J, Kaul B. Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility. Appl Energy 2017;189: 122–132, ISSN 0306-2619.

Pachiannan T, Zhong W, Rajkumar S, He Z, Leng X, Wang Q. A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Appl Energy 2019;251: 113380, ISSN 0306-2619.

Krishnamoorthi, M., Malayalamurthi, R., He, Z., & Kandasamy, S. (2019). A review on low temperature combustion engines: Performance, combustion and emission characteristics. Renewable and Sustainable Energy Reviews, 116, 109404. doi:10.1016/j.rser.2019.109404

Javier López J, García-Oliver JM, García A, Domenech V. Gasoline effects on spray characteristics, mixing and auto-ignition processes in a CI engine under Partially Premixed Combustion conditions. Appl Therm Eng 2014;70(1): 996–1006, ISSN 1359-4311.

Komninos NP, Rakopoulos CD. Heat transfer in hcci phenomenological simulation models: a review. Appl Energy 2016; 181: 179–209, ISSN 0306-2619.

Yousefi, A., Gharehghani, A., & Birouk, M. (2015). Comparison study on combustion characteristics and emissions of a homogeneous charge compression ignition (HCCI) engine with and without pre-combustion chamber. Energy Conversion and Management, 100, 232-241. doi:10.1016/j.enconman.2015.05.024

Martins, M., Fischer, I., Gusberti, F., Sari, R., & Nora, M. D. (2017). HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine. SAE Technical Paper Series. doi:10.4271/2017-01-0733

Hunicz, J., Mikulski, M., Geca, M. S., & Rybak, A. (2020). An applicable approach to mitigate pressure rise rate in an HCCI engine with negative valve overlap. Applied Energy, 257, 114018. doi:10.1016/j.apenergy.2019.114018

Kokjohn SL, Hanson RM, Splitter DA, Reitz RD. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. Int J Engine Res 2011;12: 209-226.

Benajes J, Molina S, García A, Monsalve-Serrano J. Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Convers Manage 2015;99: 193-209, ISSN 0196-8904.

Benajes J, García A., Monsalve-Serrano J, Sari R. Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy 2018;157: 19–30.

Olmeda P, García A, Monsalve-Serrano J, Sari R. Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Appl Therm Eng 2018;144: 424-36, ISSN 1359-4311.

Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028

García, A., Monsalve-Serrano, J., Rückert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2016). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences, 7(1), 36. doi:10.3390/app7010036

Benajes, J., García, A., Monsalve-Serrano, J., & Sari, R. (2020). Clean and efficient dual-fuel combustion using OMEx as high reactivity fuel: Comparison to diesel-gasoline calibration. Energy Conversion and Management, 216, 112953. doi:10.1016/j.enconman.2020.112953

García, A., Monsalve-Serrano, J., Villalta, D., & Sari, R. (2019). Fuel sensitivity effects on dual-mode dual-fuel combustion operation for different octane numbers. Energy Conversion and Management, 201, 112137. doi:10.1016/j.enconman.2019.112137

García, A., Monsalve-Serrano, J., Villalta, D., & Sari, R. (2019). Octane number influence on combustion and performance parameters in a Dual-Mode Dual-Fuel engine. Fuel, 258, 116140. doi:10.1016/j.fuel.2019.116140

García, A., Monsalve-Serrano, J., Villalta, D., Lago Sari, R., Gordillo Zavaleta, V., & Gaillard, P. (2019). Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept. Applied Energy, 253, 113622. doi:10.1016/j.apenergy.2019.113622

Gong C, Yi L, Zhang Z, Sun J, Liu F. Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios. Appl Energy 2020; 261:114478, ISSN 0306-2619.

Gong C, Zhang Z, Sun J, Chen Y, Liu F. Computational study of nozzle spray-line distribution effects on stratified mixture formation, combustion and emissions of a high compression ratio DISI methanol engine under lean-burn condition. Energy 2020;205: 118080, ISSN 0360-5442.

Gong C, Sun J, Liu F. Numerical study of twin-spark plug arrangement effects on flame, combustion and emissions of a medium compression ratio direct-injection methanol engine. Fuel 2020;279: 118427, ISSN 0016-2361.

Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016

García A, Monsalve-Serrano J, Villalta D, Sari R. Performance of a conventional diesel aftertreatment system used in a medium-duty multi-cylinder dual-mode dual-fuel engine. Energy Convers Manage 2019;184: 327-37, ISSN 0196-8904.

Gong C, Lib Z, Yi L, Liu F. Comparative study on combustion and emissions between methanol portinjection engine and methanol direct-injection engine with H2-enriched port-injection under lean-burn conditions. Energy Convers Manage 2019;200, ISSN 0196-8904.

Gong C, Li Z, Yi L, Liu F. Experimental investigation of equivalence ratio effects on combustion and emissions characteristics of an H2/methanol dual-injection engine under different spark timings. Fuel 2020;262: 116463,ISSN 0016-2361.

Gong C, Li Z, Yi L, Huang K, Liu F. Research on the performance of a hydrogen/methanol dual-injection assisted spark-ignition engine using late-injection strategy for methanol. Fuel 2020; 260: 116403, ISSN 0016-2361.

Park Y, Bae C. Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine. Appl Energy 2014;133: 308–16, ISSN 0306-2619.

Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014

AVL manufacturer manual. Smoke value measurement with the filter-papermethod. Application notes. June 2005 AT1007E, Rev. 02. Web:<https://www.avl.com/documents/10138/885893/Application+Notes >.

García A, Gil A, Monsalve-Serrano J, Sari R. OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy. Fuel 2020;275: 117898, ISSN 0016-2361.

Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064

Turns S. An introduction to combustion: concepts and applications. McGraw-Hill Series in Mechanical Engineering, second edition; 2000.

Volvo trucks: Volvo FE: Available at< https://www.volvotrucks.com.au/en-au/trucks/volvo-fe.html accessed in 16/04/2020>.

Gamma Technologies: Vehicle Driveline and HEV Application Manual; 2018.

Luján J, García A, Monsalve-Serrano J, Martínez-Boggio S. Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Convers Manage 2019;199: 111987, ISSN 0196-8904.

COMMISSION REGULATION (EU) No 582/2011.Implementing and amending Regulation (EC) No 595/2009 of the European Parliament and of the Council with respect to emissions from heavy duty vehicles (Euro VI) and amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council; 25 May 2011.

Sampara, C. S., Bissett, E. J., & Chmielewski, M. (2007). Global Kinetics for a Commercial Diesel Oxidation Catalyst with Two Exhaust Hydrocarbons. Industrial & Engineering Chemistry Research, 47(2), 311-322. doi:10.1021/ie070813x

Sampara, C. S., Bissett, E. J., Chmielewski, M., & Assanis, D. (2007). Global Kinetics for Platinum Diesel Oxidation Catalysts. Industrial & Engineering Chemistry Research, 46(24), 7993-8003. doi:10.1021/ie070642w

Silvis W. An Algorithm for Calculating the Air/Fuel Ratio from Exhaust Emissions. SAE Technical Paper 970514; 1997.

Gamma Technologies: Optimization Manual; 2018.

Wang Q, Wang B, Yao C, Liu M, Wu T, Wei H, Dou Z. Study on cyclic variability of dual fuel combustion in a methanol fumigated diesel engine. Fuel 2016;164: 99–109, ISSN 0016-236.

Macián V, Serrano JR, Piqueras P, Sanchis J. Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters. Energy 2019;179: 407-421, ISSN 0360-5442.

Payri, F., Arnau, F. J., Piqueras, P., & Ruiz, M. J. (2018). Lumped Approach for Flow-Through and Wall-Flow Monolithic Reactors Modelling for Real-Time Automotive Applications. SAE Technical Paper Series. doi:10.4271/2018-01-0954

Pedrozo, V. B., May, I., Lanzanova, T. D. M., & Zhao, H. (2016). Potential of internal EGR and throttled operation for low load extension of ethanol–diesel dual-fuel reactivity controlled compression ignition combustion on a heavy-duty engine. Fuel, 179, 391-405. doi:10.1016/j.fuel.2016.03.090

Heywood JB. Internal combustion engine fundamentals. McGraw-Hill, 2018, Second edition.

Gao, J., Tian, G., Sorniotti, A., Karci, A. E., & Di Palo, R. (2019). Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up. Applied Thermal Engineering, 147, 177-187. doi:10.1016/j.applthermaleng.2018.10.037

Yang, S., Deng, C., Gao, Y., & He, Y. (2016). Diesel particulate filter design simulation: A review. Advances in Mechanical Engineering, 8(3), 168781401663732. doi:10.1177/1687814016637328

Serrano J, Climent H, Piqueras P, Angiolini E. Filtration modelling in wall-flow particulate filters of low soot penetration thickness. Energy 2016;112: 883-898, ISSN 0360-5442.

Payri F, Broatch A, Serrano JR, Piqueras P. Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs). Energy 2011;36(12): 6731-6744, ISSN 0360-5442.

Bermúdez, V., Serrano, J., Piqueras, P., & Sanchis, E. (2017). On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Applied Sciences, 7(3), 234. doi:10.3390/app7030234

Rößler, M., Velji, A., Janzer, C., Koch, T., & Olzmann, M. (2017). Formation of Engine Internal NO2: Measures to Control the NO2/NOX Ratio for Enhanced Exhaust After Treatment. SAE International Journal of Engines, 10(4), 1880-1893. doi:10.4271/2017-01-1017

Singh, N., Rutland, C. J., Foster, D. E., Narayanaswamy, K., & He, Y. (2009). Investigation into Different DPF Regeneration Strategies Based on Fuel Economy Using Integrated System Simulation. SAE Technical Paper Series. doi:10.4271/2009-01-1275

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem