- -

Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion

Mostrar el registro completo del ítem

García Martínez, A.; Carlucci, P.; Monsalve-Serrano, J.; Valletta, A.; Martínez-Boggio, SD. (2020). Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion. Applied Energy. 272:1-18. https://doi.org/10.1016/j.apenergy.2020.115191

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166968

Ficheros en el ítem

Metadatos del ítem

Título: Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion
Autor: García Martínez, Antonio Carlucci, Paolo Monsalve-Serrano, Javier Valletta, Andrea Martínez-Boggio, Santiago Daniel
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Reactivity Controlled Compression Ignition combustion technology potentials are well known for the capability to drastically reduce the engine-out nitrogen oxides and soot emissions simultaneously. Its implementation ...[+]
Palabras clave: RCCI , Energy management , ECMS , Hybrid powertrain , Emissions regulations
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied Energy. (issn: 0306-2619 )
DOI: 10.1016/j.apenergy.2020.115191
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.apenergy.2020.115191
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/
info:eu-repo/grantAgreement/UPV//SP20180148/
Agradecimientos:
The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R). The authors also acknowledge the Universitat Politecnica ...[+]
Tipo: Artículo

References

European Commission. REGULATION (EU) 2019/631 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 April 2019 setting CO2 emission performance standards for new passenger cars and for new light commercial vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/201. Off J Eur Union 2019;25.4.2019.

European Parliament, Council of the European Union. REGULATION (EC) No 715/2007 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and mai. Off J Eur Union 2007;L171:1–16. Doi: OJEU 29.6.2007 L171.

Palmer, K., Tate, J. E., Wadud, Z., & Nellthorp, J. (2018). Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Applied Energy, 209, 108-119. doi:10.1016/j.apenergy.2017.10.089 [+]
European Commission. REGULATION (EU) 2019/631 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 April 2019 setting CO2 emission performance standards for new passenger cars and for new light commercial vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/201. Off J Eur Union 2019;25.4.2019.

European Parliament, Council of the European Union. REGULATION (EC) No 715/2007 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and mai. Off J Eur Union 2007;L171:1–16. Doi: OJEU 29.6.2007 L171.

Palmer, K., Tate, J. E., Wadud, Z., & Nellthorp, J. (2018). Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Applied Energy, 209, 108-119. doi:10.1016/j.apenergy.2017.10.089

Wu, Z., Wang, C., Wolfram, P., Zhang, Y., Sun, X., & Hertwich, E. (2019). Assessing electric vehicle policy with region-specific carbon footprints. Applied Energy, 256, 113923. doi:10.1016/j.apenergy.2019.113923

Hofmann, J., Guan, D., Chalvatzis, K., & Huo, H. (2016). Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China. Applied Energy, 184, 995-1003. doi:10.1016/j.apenergy.2016.06.042

Senecal, P. K., & Leach, F. (2019). Diversity in transportation: Why a mix of propulsion technologies is the way forward for the future fleet. Results in Engineering, 4, 100060. doi:10.1016/j.rineng.2019.100060

Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2016). An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Conversion and Management, 123, 381-391. doi:10.1016/j.enconman.2016.06.059

Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015

Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016

García, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043

García, A., & Monsalve-Serrano, J. (2019). Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source. Results in Engineering, 1, 100001. doi:10.1016/j.rineng.2019.01.001

Benajes, J., García, A., Monsalve-Serrano, J., & Sari, R. (2018). Potential of RCCI Series Hybrid Vehicle Architecture to Meet the Future CO2 Targets with Low Engine-Out Emissions. Applied Sciences, 8(9), 1472. doi:10.3390/app8091472

Zhuang W, Li (Eben) S, Zhang X, Kum D, Song Z, Yin G, et al. A survey of powertrain configuration studies on hybrid electric vehicles. Appl Energy 2020;262:114553. Doi: 10.1016/j.apenergy.2020.114553.

Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010

Shabbir, W., & Evangelou, S. A. (2019). Threshold-changing control strategy for series hybrid electric vehicles. Applied Energy, 235, 761-775. doi:10.1016/j.apenergy.2018.11.003

Paganelli, G. (2001). General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review, 22(4), 511-518. doi:10.1016/s0389-4304(01)00138-2

Lei, Z., Qin, D., Hou, L., Peng, J., Liu, Y., & Chen, Z. (2020). An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information. Energy, 190, 116409. doi:10.1016/j.energy.2019.116409

Li, Y., & Jiao, X. (2019). Energy management strategy for hybrid electric vehicles based on adaptive equivalent consumption minimization strategy and mode switching with variable thresholds. Science Progress, 103(1), 003685041987499. doi:10.1177/0036850419874992

Zhang, Y., Chu, L., Fu, Z., Guo, C., Zhao, D., Li, Y., … Xu, L. (2018). An improved adaptive equivalent consumption minimization strategy for parallel plug-in hybrid electric vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(6), 1649-1663. doi:10.1177/0954407018805605

Stroe, N., Olaru, S., Colin, G., Ben-Cherif, K., & Chamaillard, Y. (2017). A two-layer predictive control for hybrid electric vehicles energy management. IFAC-PapersOnLine, 50(1), 10058-10064. doi:10.1016/j.ifacol.2017.08.1777

Wang, Y., Wang, X., Sun, Y., & You, S. (2018). Model predictive control strategy for energy optimization of series-parallel hybrid electric vehicle. Journal of Cleaner Production, 199, 348-358. doi:10.1016/j.jclepro.2018.07.191

Zhou, Y., Ravey, A., & Péra, M.-C. (2020). Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer. Applied Energy, 258, 114057. doi:10.1016/j.apenergy.2019.114057

Finesso, R., Spessa, E., & Venditti, M. (2014). Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle. Applied Energy, 134, 573-588. doi:10.1016/j.apenergy.2014.08.007

Qin, Z., Luo, Y., Zhuang, W., Pan, Z., Li, K., & Peng, H. (2018). Simultaneous optimization of topology, control and size for multi-mode hybrid tracked vehicles. Applied Energy, 212, 1627-1641. doi:10.1016/j.apenergy.2017.12.081

He, Y., Wang, C., Zhou, Q., Li, J., Makridis, M., Williams, H., … Xu, H. (2020). Multiobjective component sizing of a hybrid ethanol-electric vehicle propulsion system. Applied Energy, 266, 114843. doi:10.1016/j.apenergy.2020.114843

Finesso, R., Spessa, E., & Venditti, M. (2016). Cost-optimized design of a dual-mode diesel parallel hybrid electric vehicle for several driving missions and market scenarios. Applied Energy, 177, 366-383. doi:10.1016/j.apenergy.2016.05.080

Nüesch, T., Cerofolini, A., Mancini, G., Cavina, N., Onder, C., & Guzzella, L. (2014). Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle. Energies, 7(5), 3148-3178. doi:10.3390/en7053148

Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028

Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Gaseous emissions and particle size distribution of dual-mode dual-fuel diesel-gasoline concept from low to full load. Applied Thermal Engineering, 120, 138-149. doi:10.1016/j.applthermaleng.2017.04.005

Winke F. Transient effects in simulations of hybrid electric drivetrains. 2019. Doi: 10.1007/978-3-658-22554-4.

Luján, J. M., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987

Petersheim, M. D., & Brennan, S. N. (2009). Scaling of hybrid-electric vehicle powertrain components for Hardware-in-the-loop simulation. Mechatronics, 19(7), 1078-1090. doi:10.1016/j.mechatronics.2009.08.001

Emadi A. Handbook of automotive power electronics and motor drives. 2017. Doi: 10.1201/9781420028157.

A123 Systems. Nanophosphate high power lithium ion cell ANR26650 m1-B 316AD:400. https://www.batteryspace.com/prod-specs/6610.pdf (accessed March 27, 2020).

Perez HE, Siegel JB, Lin X, Stefanopoulou AG, Ding Y, Castanier MP. Parameterization and validation of an integrated electro-thermal cylindrical LFP battery model. Vol. 3 Renew. Energy Syst. Robot. Robust Control. Single Track Veh. Dyn. Control. Stoch. Model. Control Algorithms Robot. Struct. Dyn. Smart Struct., vol. 3, ASME; 2012, p. 41–50. Doi: 10.1115/DSCC2012-MOVIC2012-8782.

Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., & He, X. (2018). Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 10, 246-267. doi:10.1016/j.ensm.2017.05.013

Bayar, K., Biasini, R., Onori, S., & Rizzoni, G. (2012). Modelling and control of a brake system for an extended range electric vehicle equipped with axle motors. International Journal of Vehicle Design, 58(2/3/4), 399. doi:10.1504/ijvd.2012.047387

Nations U. Addendum 12: Regulation No. 13 2011.

Sundstrom O, Guzzella L. A generic dynamic programming Matlab function. 2009 IEEE Int. Conf. Control Appl., IEEE; 2009, p. 1625–30. Doi: 10.1109/CCA.2009.5281131.

Serrao, L., Onori, S., & Rizzoni, G. (2011). A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles. Journal of Dynamic Systems, Measurement, and Control, 133(3). doi:10.1115/1.4003267

Grondin, O., Thibault, L., & Quérel, C. (2014). Energy Management Strategies for Diesel Hybrid Electric Vehicle. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 70(1), 125-141. doi:10.2516/ogst/2013215

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem