- -

Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Carlucci, Paolo es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.contributor.author Valletta, Andrea es_ES
dc.contributor.author Martínez-Boggio, Santiago Daniel es_ES
dc.date.accessioned 2021-05-29T03:33:52Z
dc.date.available 2021-05-29T03:33:52Z
dc.date.issued 2020-08-15 es_ES
dc.identifier.issn 0306-2619 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166968
dc.description.abstract [EN] Reactivity Controlled Compression Ignition combustion technology potentials are well known for the capability to drastically reduce the engine-out nitrogen oxides and soot emissions simultaneously. Its implementation in mid-term low-duty diesel engines can be beneficial to meet the upcoming regulations. To explore the potential of this solution, experimental data are used from a compression ignition 1.9 L engine, which is operated under two combustion-modes: Reactivity Controlled Compression Ignition and conventional diesel combustion. Meanwhile, also the carbon dioxide emissions limitations must be fulfilled. To achieve this goal, the benefits associated to powertrain electrification in terms of fuel economy, can be joined with the benefits of RCCI combustion. To do so, two different supervisory control strategies are compared: Adaptive Equivalent Minimization Control Strategy and Rule-Based Control strategy, while dynamic programming is used to size the electric grid of the powertrain to provide the best optimal solution in terms of fuel economy and emissions abatement. The analysis of the designed hybrid powertrain is carried out numerically with GT-Suite and Matlab-Simulink software. The results show a great potential of the parallel full-hybrid electric vehicle powertrain equipped with the dual-mode engine to reduce the engine-out emissions, also to increase fuel economy with respect to the homologation fuel consumption of the baseline vehicle. The optimal supervisory control strategy was found to be the emissions-oriented Adaptive Equivalent Minimization Control Strategy, which scores a simultaneous reduction of 12% in fuel consumption, 75% in engine-out nitrogen oxides emissions and 82% in engine-out soot, with respect to the baseline conventional diesel combustion engine vehicle. es_ES
dc.description.sponsorship The authors acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R). The authors also acknowledge the Universitat Politecnica de Valencia for partially supporting this research through Convocatoria de ayudas a Primeros Proyectos de Investigacion (SP20180148). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject RCCI es_ES
dc.subject Energy management es_ES
dc.subject ECMS es_ES
dc.subject Hybrid powertrain es_ES
dc.subject Emissions regulations es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apenergy.2020.115191 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-87694-R/ES/REDUCCION DE CO2 EN EL TRANSPORTE MEDIANTE LA INYECCION DIRECTA DUAL-FUEL DE BIOCOMBUSTIBLES DE SEGUNDA GENERACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180148/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation García Martínez, A.; Carlucci, P.; Monsalve-Serrano, J.; Valletta, A.; Martínez-Boggio, SD. (2020). Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion. Applied Energy. 272:1-18. https://doi.org/10.1016/j.apenergy.2020.115191 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apenergy.2020.115191 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 272 es_ES
dc.relation.pasarela S\413104 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references European Commission. REGULATION (EU) 2019/631 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 April 2019 setting CO2 emission performance standards for new passenger cars and for new light commercial vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/201. Off J Eur Union 2019;25.4.2019. es_ES
dc.description.references European Parliament, Council of the European Union. REGULATION (EC) No 715/2007 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and mai. Off J Eur Union 2007;L171:1–16. Doi: OJEU 29.6.2007 L171. es_ES
dc.description.references Palmer, K., Tate, J. E., Wadud, Z., & Nellthorp, J. (2018). Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Applied Energy, 209, 108-119. doi:10.1016/j.apenergy.2017.10.089 es_ES
dc.description.references Wu, Z., Wang, C., Wolfram, P., Zhang, Y., Sun, X., & Hertwich, E. (2019). Assessing electric vehicle policy with region-specific carbon footprints. Applied Energy, 256, 113923. doi:10.1016/j.apenergy.2019.113923 es_ES
dc.description.references Hofmann, J., Guan, D., Chalvatzis, K., & Huo, H. (2016). Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China. Applied Energy, 184, 995-1003. doi:10.1016/j.apenergy.2016.06.042 es_ES
dc.description.references Senecal, P. K., & Leach, F. (2019). Diversity in transportation: Why a mix of propulsion technologies is the way forward for the future fleet. Results in Engineering, 4, 100060. doi:10.1016/j.rineng.2019.100060 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2016). An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel. Energy Conversion and Management, 123, 381-391. doi:10.1016/j.enconman.2016.06.059 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Benefits of E85 versus gasoline as low reactivity fuel for an automotive diesel engine operating in reactivity controlled compression ignition combustion mode. Energy Conversion and Management, 159, 85-95. doi:10.1016/j.enconman.2018.01.015 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016 es_ES
dc.description.references García, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043 es_ES
dc.description.references García, A., & Monsalve-Serrano, J. (2019). Analysis of a series hybrid vehicle concept that combines low temperature combustion and biofuels as power source. Results in Engineering, 1, 100001. doi:10.1016/j.rineng.2019.01.001 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Sari, R. (2018). Potential of RCCI Series Hybrid Vehicle Architecture to Meet the Future CO2 Targets with Low Engine-Out Emissions. Applied Sciences, 8(9), 1472. doi:10.3390/app8091472 es_ES
dc.description.references Zhuang W, Li (Eben) S, Zhang X, Kum D, Song Z, Yin G, et al. A survey of powertrain configuration studies on hybrid electric vehicles. Appl Energy 2020;262:114553. Doi: 10.1016/j.apenergy.2020.114553. es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010 es_ES
dc.description.references Shabbir, W., & Evangelou, S. A. (2019). Threshold-changing control strategy for series hybrid electric vehicles. Applied Energy, 235, 761-775. doi:10.1016/j.apenergy.2018.11.003 es_ES
dc.description.references Paganelli, G. (2001). General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review, 22(4), 511-518. doi:10.1016/s0389-4304(01)00138-2 es_ES
dc.description.references Lei, Z., Qin, D., Hou, L., Peng, J., Liu, Y., & Chen, Z. (2020). An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information. Energy, 190, 116409. doi:10.1016/j.energy.2019.116409 es_ES
dc.description.references Li, Y., & Jiao, X. (2019). Energy management strategy for hybrid electric vehicles based on adaptive equivalent consumption minimization strategy and mode switching with variable thresholds. Science Progress, 103(1), 003685041987499. doi:10.1177/0036850419874992 es_ES
dc.description.references Zhang, Y., Chu, L., Fu, Z., Guo, C., Zhao, D., Li, Y., … Xu, L. (2018). An improved adaptive equivalent consumption minimization strategy for parallel plug-in hybrid electric vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(6), 1649-1663. doi:10.1177/0954407018805605 es_ES
dc.description.references Stroe, N., Olaru, S., Colin, G., Ben-Cherif, K., & Chamaillard, Y. (2017). A two-layer predictive control for hybrid electric vehicles energy management. IFAC-PapersOnLine, 50(1), 10058-10064. doi:10.1016/j.ifacol.2017.08.1777 es_ES
dc.description.references Wang, Y., Wang, X., Sun, Y., & You, S. (2018). Model predictive control strategy for energy optimization of series-parallel hybrid electric vehicle. Journal of Cleaner Production, 199, 348-358. doi:10.1016/j.jclepro.2018.07.191 es_ES
dc.description.references Zhou, Y., Ravey, A., & Péra, M.-C. (2020). Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer. Applied Energy, 258, 114057. doi:10.1016/j.apenergy.2019.114057 es_ES
dc.description.references Finesso, R., Spessa, E., & Venditti, M. (2014). Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle. Applied Energy, 134, 573-588. doi:10.1016/j.apenergy.2014.08.007 es_ES
dc.description.references Qin, Z., Luo, Y., Zhuang, W., Pan, Z., Li, K., & Peng, H. (2018). Simultaneous optimization of topology, control and size for multi-mode hybrid tracked vehicles. Applied Energy, 212, 1627-1641. doi:10.1016/j.apenergy.2017.12.081 es_ES
dc.description.references He, Y., Wang, C., Zhou, Q., Li, J., Makridis, M., Williams, H., … Xu, H. (2020). Multiobjective component sizing of a hybrid ethanol-electric vehicle propulsion system. Applied Energy, 266, 114843. doi:10.1016/j.apenergy.2020.114843 es_ES
dc.description.references Finesso, R., Spessa, E., & Venditti, M. (2016). Cost-optimized design of a dual-mode diesel parallel hybrid electric vehicle for several driving missions and market scenarios. Applied Energy, 177, 366-383. doi:10.1016/j.apenergy.2016.05.080 es_ES
dc.description.references Nüesch, T., Cerofolini, A., Mancini, G., Cavina, N., Onder, C., & Guzzella, L. (2014). Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle. Energies, 7(5), 3148-3178. doi:10.3390/en7053148 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Boronat, V. (2017). Gaseous emissions and particle size distribution of dual-mode dual-fuel diesel-gasoline concept from low to full load. Applied Thermal Engineering, 120, 138-149. doi:10.1016/j.applthermaleng.2017.04.005 es_ES
dc.description.references Winke F. Transient effects in simulations of hybrid electric drivetrains. 2019. Doi: 10.1007/978-3-658-22554-4. es_ES
dc.description.references Luján, J. M., García, A., Monsalve-Serrano, J., & Martínez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987 es_ES
dc.description.references Petersheim, M. D., & Brennan, S. N. (2009). Scaling of hybrid-electric vehicle powertrain components for Hardware-in-the-loop simulation. Mechatronics, 19(7), 1078-1090. doi:10.1016/j.mechatronics.2009.08.001 es_ES
dc.description.references Emadi A. Handbook of automotive power electronics and motor drives. 2017. Doi: 10.1201/9781420028157. es_ES
dc.description.references A123 Systems. Nanophosphate high power lithium ion cell ANR26650 m1-B 316AD:400. https://www.batteryspace.com/prod-specs/6610.pdf (accessed March 27, 2020). es_ES
dc.description.references Perez HE, Siegel JB, Lin X, Stefanopoulou AG, Ding Y, Castanier MP. Parameterization and validation of an integrated electro-thermal cylindrical LFP battery model. Vol. 3 Renew. Energy Syst. Robot. Robust Control. Single Track Veh. Dyn. Control. Stoch. Model. Control Algorithms Robot. Struct. Dyn. Smart Struct., vol. 3, ASME; 2012, p. 41–50. Doi: 10.1115/DSCC2012-MOVIC2012-8782. es_ES
dc.description.references Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., & He, X. (2018). Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 10, 246-267. doi:10.1016/j.ensm.2017.05.013 es_ES
dc.description.references Bayar, K., Biasini, R., Onori, S., & Rizzoni, G. (2012). Modelling and control of a brake system for an extended range electric vehicle equipped with axle motors. International Journal of Vehicle Design, 58(2/3/4), 399. doi:10.1504/ijvd.2012.047387 es_ES
dc.description.references Nations U. Addendum 12: Regulation No. 13 2011. es_ES
dc.description.references Sundstrom O, Guzzella L. A generic dynamic programming Matlab function. 2009 IEEE Int. Conf. Control Appl., IEEE; 2009, p. 1625–30. Doi: 10.1109/CCA.2009.5281131. es_ES
dc.description.references Serrao, L., Onori, S., & Rizzoni, G. (2011). A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles. Journal of Dynamic Systems, Measurement, and Control, 133(3). doi:10.1115/1.4003267 es_ES
dc.description.references Grondin, O., Thibault, L., & Quérel, C. (2014). Energy Management Strategies for Diesel Hybrid Electric Vehicle. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 70(1), 125-141. doi:10.2516/ogst/2013215 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem