- -

Volatile Profile of Wall Rocket Baby-Leaves (Diplotaxis erucoides) Grown under Greenhouse: Main Compounds and Genotype Diversity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Volatile Profile of Wall Rocket Baby-Leaves (Diplotaxis erucoides) Grown under Greenhouse: Main Compounds and Genotype Diversity

Mostrar el registro completo del ítem

Guijarro-Real, C.; Rodríguez Burruezo, A.; Fita, A. (2020). Volatile Profile of Wall Rocket Baby-Leaves (Diplotaxis erucoides) Grown under Greenhouse: Main Compounds and Genotype Diversity. Agronomy. 10(6):1-16. https://doi.org/10.3390/agronomy10060802

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166994

Ficheros en el ítem

Metadatos del ítem

Título: Volatile Profile of Wall Rocket Baby-Leaves (Diplotaxis erucoides) Grown under Greenhouse: Main Compounds and Genotype Diversity
Autor: Guijarro-Real, Carla Rodríguez Burruezo, Adrián Fita, Ana
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Fecha difusión:
Resumen:
[EN] Wall rocket is a leafy vegetable with pungent flavor related to the presence of isothiocyanates (ITCs). Despite interest in it as a crop of high organoleptic quality, the variability of the volatile profile in the ...[+]
Palabras clave: Allyl isothiocyanate , Diplotaxis erucoides , Esters , GC-MS , HS-SPME , New crops , Sinigrin , Variability , Wall rocket
Derechos de uso: Reconocimiento (by)
Fuente:
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy10060802
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/agronomy10060802
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU14%2F06798/ES/FPU14%2F06798/
Agradecimientos:
C.G. thanks the Ministerio de Educacion, Cultura y Deporte of Spain (MECD) for the financial support by means of a predoctoral FPU grant (FPU14-06798).
Tipo: Artículo

References

Guijarro-Real, C., Navarro, A., Esposito, S., Festa, G., Macellaro, R., Di Cesare, C., … Tripodi, P. (2020). Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin. Euphytica, 216(3). doi:10.1007/s10681-020-02586-x

D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507

Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides). Food Research International, 132, 109008. doi:10.1016/j.foodres.2020.109008 [+]
Guijarro-Real, C., Navarro, A., Esposito, S., Festa, G., Macellaro, R., Di Cesare, C., … Tripodi, P. (2020). Large scale phenotyping and molecular analysis in a germplasm collection of rocket salad (Eruca vesicaria) reveal a differentiation of the gene pool by geographical origin. Euphytica, 216(3). doi:10.1007/s10681-020-02586-x

D’Antuono, L. F., Elementi, S., & Neri, R. (2009). Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and relatedDiplotaxisandErucaspecies. Journal of the Science of Food and Agriculture, 89(4), 713-722. doi:10.1002/jsfa.3507

Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Consumers acceptance and volatile profile of wall rocket (Diplotaxis erucoides). Food Research International, 132, 109008. doi:10.1016/j.foodres.2020.109008

Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050

Guijarro-Real, C., Adalid-Martínez, A. M., Aguirre, K., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Growing Conditions Affect the Phytochemical Composition of Edible Wall Rocket (Diplotaxis erucoides). Agronomy, 9(12), 858. doi:10.3390/agronomy9120858

Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Morphological Diversity and Bioactive Compounds in Wall Rocket (Diplotaxis erucoides (L.) DC.). Agronomy, 10(2), 306. doi:10.3390/agronomy10020306

Guijarro-Real, C., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2019). Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Scientia Horticulturae, 258, 108778. doi:10.1016/j.scienta.2019.108778

Bell, L., Yahya, H. N., Oloyede, O. O., Methven, L., & Wagstaff, C. (2017). Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing. Food Chemistry, 221, 521-534. doi:10.1016/j.foodchem.2016.11.154

Bell, L., Oloyede, O. O., Lignou, S., Wagstaff, C., & Methven, L. (2018). Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Molecular Nutrition & Food Research, 62(18), 1700990. doi:10.1002/mnfr.201700990

Sávio, A. L. V., da Silva, G. N., & Salvadori, D. M. F. (2015). Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 771, 29-35. doi:10.1016/j.mrfmmm.2014.11.004

Savio, A. L. V., da Silva, G. N., Camargo, E. A. de, & Salvadori, D. M. F. (2014). Cell cycle kinetics, apoptosis rates, DNA damage and TP53 gene expression in bladder cancer cells treated with allyl isothiocyanate (mustard essential oil). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 762, 40-46. doi:10.1016/j.mrfmmm.2014.02.006

Rajakumar, T., Pugalendhi, P., & Thilagavathi, S. (2015). Dose response chemopreventive potential of allyl isothiocyanate against 7,12-dimethylbenz(a)anthracene induced mammary carcinogenesis in female Sprague-Dawley rats. Chemico-Biological Interactions, 231, 35-43. doi:10.1016/j.cbi.2015.02.015

Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022

D’Antuono, L. F., Elementi, S., & Neri, R. (2008). Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry, 69(1), 187-199. doi:10.1016/j.phytochem.2007.06.019

Guijarro-Real, C., Adalid-Martínez, A. M., Gregori-Montaner, A., Prohens, J., Rodríguez-Burruezo, A., & Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae, 261, 109013. doi:10.1016/j.scienta.2019.109013

Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., Raigón, M. D., & Fita, A. (2019). HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Research International, 121, 765-775. doi:10.1016/j.foodres.2018.12.054

Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001

Bell, L., Spadafora, N. D., Müller, C. T., Wagstaff, C., & Rogers, H. J. (2016). Use of TD-GC–TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa). Food Chemistry, 194, 626-636. doi:10.1016/j.foodchem.2015.08.043

Pasini, F., Verardo, V., Caboni, M. F., & D’Antuono, L. F. (2012). Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chemistry, 133(3), 1025-1033. doi:10.1016/j.foodchem.2012.01.021

Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468

López-Gresa, M. P., Lisón, P., Campos, L., Rodrigo, I., Rambla, J. L., Granell, A., … Bellés, J. M. (2017). A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01188

Jirovetz, L., Smith, D., & Buchbauer, G. (2002). Aroma Compound Analysis of Eruca sativa (Brassicaceae) SPME Headspace Leaf Samples Using GC, GC−MS, and Olfactometry. Journal of Agricultural and Food Chemistry, 50(16), 4643-4646. doi:10.1021/jf020129n

González-Mas, M. C., Rambla, J. L., Alamar, M. C., Gutiérrez, A., & Granell, A. (2011). Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species. PLoS ONE, 6(7), e22016. doi:10.1371/journal.pone.0022016

Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S., & Fernando, N. (2010). HS-SPME Comparative Analysis of Genotypic Diversity in the Volatile Fraction and Aroma-Contributing Compounds of Capsicum Fruits from the annuum−chinense−frutescens Complex. Journal of Agricultural and Food Chemistry, 58(7), 4388-4400. doi:10.1021/jf903931t

Blažević, I., & Mastelić, J. (2008). Free and bound volatiles of rocket (Eruca sativaMill.). Flavour and Fragrance Journal, 23(4), 278-285. doi:10.1002/ffj.1883

Hanschen, F. S., & Schreiner, M. (2017). Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in Brassica oleracea Varieties. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01095

Blažević, I., & Mastelić, J. (2009). Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chemistry, 113(1), 96-102. doi:10.1016/j.foodchem.2008.07.029

Miyazawa, M., Nishiguchi, T., & Yamafuji, C. (2005). Volatile components of the leaves ofBrassica rapa L. var.perviridis Bailey. Flavour and Fragrance Journal, 20(2), 158-160. doi:10.1002/ffj.1335

Clemente-Villalba, J., Ariza, D., García-Garví, J. M., Sánchez-Bravo, P., Noguera-Artiaga, L., Issa-Issa, H., … Carbonell-Barrachina, Á. A. (2020). Characterization and potential use of Diplotaxis erucoides as food ingredient for a sustainable modern cuisine and comparison with commercial mustards and wasabis. European Food Research and Technology, 246(7), 1429-1438. doi:10.1007/s00217-020-03501-3

Raffo, A., Masci, M., Moneta, E., Nicoli, S., Sánchez del Pulgar, J., & Paoletti, F. (2018). Characterization of volatiles and identification of odor-active compounds of rocket leaves. Food Chemistry, 240, 1161-1170. doi:10.1016/j.foodchem.2017.08.009

Mastrandrea, L., Amodio, M. L., Pati, S., & Colelli, G. (2017). Effect of modified atmosphere packaging and temperature abuse on flavor related volatile compounds of rocket leaves (Diplotaxis tenuifolia L.). Journal of Food Science and Technology, 54(8), 2433-2442. doi:10.1007/s13197-017-2685-6

Miyazawa, M., Maehara, T., & Kurose, K. (2002). Composition of the essential oil from the leaves ofEruca sativa. Flavour and Fragrance Journal, 17(3), 187-190. doi:10.1002/ffj.1079

Petretto, G. L., Urgeghe, P. P., Massa, D., & Melito, S. (2019). Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiology and Biochemistry, 141, 30-39. doi:10.1016/j.plaphy.2019.05.012

Spadafora, N. D., Amaro, A. L., Pereira, M. J., Müller, C. T., Pintado, M., & Rogers, H. J. (2016). Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data. Food Chemistry, 211, 114-123. doi:10.1016/j.foodchem.2016.04.107

Spadafora, N. D., Cocetta, G., Ferrante, A., Herbert, R. J., Dimitrova, S., Davoli, D., … Müller, C. T. (2019). Short-Term Post-Harvest Stress that Affects Profiles of Volatile Organic Compounds and Gene Expression in Rocket Salad during Early Post-Harvest Senescence. Plants, 9(1), 4. doi:10.3390/plants9010004

Villatoro-Pulido, M., Priego-Capote, F., Álvarez-Sánchez, B., Saha, S., Philo, M., Obregón-Cano, S., … Del Río-Celestino, M. (2013). An approach to the phytochemical profiling of rocket [Eruca sativa (Mill.) Thell]. Journal of the Science of Food and Agriculture, 93(15), 3809-3819. doi:10.1002/jsfa.6286

Bending, G. D., & Lincoln, S. D. (1999). Characterisation of volatile sulphur-containing compounds produced during decomposition of Brassica juncea tissues in soil. Soil Biology and Biochemistry, 31(5), 695-703. doi:10.1016/s0038-0717(98)00163-1

Kroener, E.-M., & Buettner, A. (2017). Unravelling important odorants in horseradish ( Armoracia rusticana ). Food Chemistry, 232, 455-465. doi:10.1016/j.foodchem.2017.04.042

Sultana, T., Porter, N. G., Savage, G. P., & McNeil, D. L. (2003). Comparison of Isothiocyanate Yield from Wasabi Rhizome Tissues Grown in Soil or Water. Journal of Agricultural and Food Chemistry, 51(12), 3586-3591. doi:10.1021/jf021116c

A. Depree, J., M. Howard, T., & P. Savage, G. (1998). Flavour and pharmaceutical properties of the volatile sulphur compounds of Wasabi (Wasabia japonica). Food Research International, 31(5), 329-337. doi:10.1016/s0963-9969(98)00105-7

Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F., & D’Antuono, L. F. (2011). Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. Journal of the Science of Food and Agriculture, 91(15), 2858-2864. doi:10.1002/jsfa.4535

Ruther, J. (2000). Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography−mass spectrometry. Journal of Chromatography A, 890(2), 313-319. doi:10.1016/s0021-9673(00)00618-x

D’Auria, J. C., Pichersky, E., Schaub, A., Hansel, A., & Gershenzon, J. (2006). Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. The Plant Journal, 49(2), 194-207. doi:10.1111/j.1365-313x.2006.02946.x

The Good Scents Companyhttp://www.thegoodscentscompany.com/

Baenas, N., Marhuenda, J., García-Viguera, C., Zafrilla, P., & Moreno, D. (2019). Influence of Cooking Methods on Glucosinolates and Isothiocyanates Content in Novel Cruciferous Foods. Foods, 8(7), 257. doi:10.3390/foods8070257

Agneta, R., Lelario, F., De Maria, S., Möllers, C., Bufo, S. A., & Rivelli, A. R. (2014). Glucosinolate profile and distribution among plant tissues and phenological stages of field-grown horseradish. Phytochemistry, 106, 178-187. doi:10.1016/j.phytochem.2014.06.019

Cools, K., & Terry, L. A. (2018). The effect of processing on the glucosinolate profile in mustard seed. Food Chemistry, 252, 343-348. doi:10.1016/j.foodchem.2018.01.096

Bell, L., Oruna-Concha, M. J., & Wagstaff, C. (2015). Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chemistry, 172, 852-861. doi:10.1016/j.foodchem.2014.09.116

Taranto, F., Francese, G., Di Dato, F., D’Alessandro, A., Greco, B., Onofaro Sanajà, V., … Tripodi, P. (2016). Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.). Journal of Agricultural and Food Chemistry, 64(29), 5824-5836. doi:10.1021/acs.jafc.6b01737

Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5-51. doi:10.1016/s0031-9422(00)00316-2

Bell, L., Methven, L., Signore, A., Oruna-Concha, M. J., & Wagstaff, C. (2017). Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chemistry, 218, 181-191. doi:10.1016/j.foodchem.2016.09.076

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem