- -

Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato

Show full item record

Gisbert Domenech, MC.; Timoneda, A.; Porcel, R.; Ros, R.; Mulet, JM. (2020). Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato. Agronomy. 10(11):1-17. https://doi.org/10.3390/agronomy10111754

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166995

Files in this item

Item Metadata

Title: Overexpression of BvHb2, a Class 2 Non-Symbiotic Hemoglobin from Sugar Beet, Confers Drought-Induced Withering Resistance and Alters Iron Content in Tomato
Author: Gisbert Domenech, Maria Carmen Timoneda, Alfonso Porcel, R Ros, Roc Mulet, José Miguel
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
[EN] Drought stress is one of the major threats to agriculture and concomitantly to food production. Tomato is one of the most important industrial crops, but its tolerance to water scarcity is very low. Traditional plant ...[+]
Subjects: Plant hemoglobin , Non-symbiotic , Sugar beet , Tomato , Drought stress , Iron , Overexpression , Beta vulgaris , Solanum lycopersicum , Water deprivation
Copyrigths: Reconocimiento (by)
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy10111754
Publisher version: https://doi.org/10.3390/agronomy10111754
Project ID:
This project was funded by the project PAID-00-10 "Introduccion De Genes Relacionados Con La Tolerancia A Estres Hidrico Y Oxidativo En Distintos Materiales Que Presentan Caracteristicas Utiles Para Su Uso Como Patrones ...[+]
Type: Artículo


Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi:10.1016/j.abb.2005.10.018

Sinclair, T. R. (2011). Challenges in breeding for yield increase for drought. Trends in Plant Science, 16(6), 289-293. doi:10.1016/j.tplants.2011.02.008

Burke, M., & Emerick, K. (2016). Adaptation to Climate Change: Evidence from US Agriculture. American Economic Journal: Economic Policy, 8(3), 106-140. doi:10.1257/pol.20130025 [+]
Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. doi:10.1016/j.abb.2005.10.018

Sinclair, T. R. (2011). Challenges in breeding for yield increase for drought. Trends in Plant Science, 16(6), 289-293. doi:10.1016/j.tplants.2011.02.008

Burke, M., & Emerick, K. (2016). Adaptation to Climate Change: Evidence from US Agriculture. American Economic Journal: Economic Policy, 8(3), 106-140. doi:10.1257/pol.20130025

Zaveri, E., Russ, J., & Damania, R. (2020). Rainfall anomalies are a significant driver of cropland expansion. Proceedings of the National Academy of Sciences, 117(19), 10225-10233. doi:10.1073/pnas.1910719117

Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266-269. doi:10.1126/science.aaz7614

Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169-183. doi:10.1016/j.biotechadv.2009.11.005

Romero, C., Bellés, J. M., Vayá, J. L., Serrano, R., & Culiáñez-Macià, F. A. (1997). Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta, 201(3), 293-297. doi:10.1007/s004250050069

Xiao, B., Huang, Y., Tang, N., & Xiong, L. (2007). Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics, 115(1), 35-46. doi:10.1007/s00122-007-0538-9

Van Camp, W. (2005). Yield enhancement genes: seeds for growth. Current Opinion in Biotechnology, 16(2), 147-153. doi:10.1016/j.copbio.2005.03.002

Locascio, A., Andrés-Colás, N., Mulet, J. M., & Yenush, L. (2019). Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. International Journal of Molecular Sciences, 20(9), 2133. doi:10.3390/ijms20092133

Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076

Porcel, R., Bustamante, A., Ros, R., Serrano, R., & Mulet Salort, J. M. (2018). BvCOLD1: A novel aquaporin from sugar beet (Beta vulgarisL.) involved in boron homeostasis and abiotic stress. Plant, Cell & Environment, 41(12), 2844-2857. doi:10.1111/pce.13416

Smagghe, B. J., Hoy, J. A., Percifield, R., Kundu, S., Hargrove, M. S., Sarath, G., … Appleby, C. A. (2009). Review: Correlations between oxygen affinity and sequence classifications of plant hemoglobins. Biopolymers, 91(12), 1083-1096. doi:10.1002/bip.21256

Bogusz, D., Appleby, C. A., Landsmann, J., Dennis, E. S., Trinick, M. J., & Peacock, W. J. (1988). Functioning haemoglobin genes in non-nodulating plants. Nature, 331(6152), 178-180. doi:10.1038/331178a0

Taylor, E. R., Nie, X. Z., MacGregor, A. W., & Hill, R. D. (1994). A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Molecular Biology, 24(6), 853-862. doi:10.1007/bf00014440

Spyrakis, F., Bruno, S., Bidon-Chanal, A., Luque, F. J., Abbruzzetti, S., Viappiani, C., … Mozzarelli, A. (2011). Oxygen binding to Arabidopsis thaliana AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport. IUBMB Life, 63(5), 355-362. doi:10.1002/iub.470

Gupta, K. J., Hebelstrup, K. H., Mur, L. A. J., & Igamberdiev, A. U. (2011). Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide. FEBS Letters, 585(24), 3843-3849. doi:10.1016/j.febslet.2011.10.036

Trevaskis, B., Watts, R. A., Andersson, C. R., Llewellyn, D. J., Hargrove, M. S., Olson, J. S., … Peacock, W. J. (1997). Two hemoglobin genes in Arabidopsis thaliana: The evolutionary origins of leghemoglobins. Proceedings of the National Academy of Sciences, 94(22), 12230-12234. doi:10.1073/pnas.94.22.12230

Hill, R. D. (2012). Non-symbiotic haemoglobins—What’s happening beyond nitric oxide scavenging? AoB PLANTS, 2012. doi:10.1093/aobpla/pls004

Hunt, P. W., Klok, E. J., Trevaskis, B., Watts, R. A., Ellis, M. H., Peacock, W. J., & Dennis, E. S. (2002). Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99(26), 17197-17202. doi:10.1073/pnas.212648799

Yang, L.-X., Wang, R.-Y., Ren, F., Liu, J., Cheng, J., & Lu, Y.-T. (2005). AtGLB1 Enhances the Tolerance of Arabidopsis to Hydrogen Peroxide Stress. Plant and Cell Physiology, 46(8), 1309-1316. doi:10.1093/pcp/pci140

Hebelstrup, K. H., & Jensen, E. Ø. (2007). Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta, 227(4), 917-927. doi:10.1007/s00425-007-0667-z

Wang, Y., Elhiti, M., Hebelstrup, K. H., Hill, R. D., & Stasolla, C. (2011). Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis. Plant Physiology and Biochemistry, 49(10), 1108-1116. doi:10.1016/j.plaphy.2011.06.005

Vigeolas, H., Hühn, D., & Geigenberger, P. (2011). Nonsymbiotic Hemoglobin-2 Leads to an Elevated Energy State and to a Combined Increase in Polyunsaturated Fatty Acids and Total Oil Content When Overexpressed in Developing Seeds of Transgenic Arabidopsis Plants. Plant Physiology, 155(3), 1435-1444. doi:10.1104/pp.110.166462

Sainz, M., Pérez-Rontomé, C., Ramos, J., Mulet, J. M., James, E. K., Bhattacharjee, U., … Becana, M. (2013). Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. The Plant Journal, 76(5), 875-887. doi:10.1111/tpj.12340


Sánchez-Rodríguez, E., Rubio-Wilhelmi, Mªm., Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., … Ruiz, J. M. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178(1), 30-40. doi:10.1016/j.plantsci.2009.10.001

Gur, A., & Zamir, D. (2004). Unused Natural Variation Can Lift Yield Barriers in Plant Breeding. PLoS Biology, 2(10), e245. doi:10.1371/journal.pbio.0020245

McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., & Fraley, R. (1986). Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Reports, 5(2), 81-84. doi:10.1007/bf00269239

Gisbert, C., Rus, A. M., Boları́n, M. C., López-Coronado, J. M., Arrillaga, I., Montesinos, C., … Moreno, V. (2000). The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato. Plant Physiology, 123(1), 393-402. doi:10.1104/pp.123.1.393

Römer, S., Fraser, P. D., Kiano, J. W., Shipton, C. A., Misawa, N., Schuch, W., & Bramley, P. M. (2000). Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnology, 18(6), 666-669. doi:10.1038/76523

Muir, S. R., Collins, G. J., Robinson, S., Hughes, S., Bovy, A., Ric De Vos, C. H., … Verhoeyen, M. E. (2001). Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology, 19(5), 470-474. doi:10.1038/88150

Schijlen, E., Ric de Vos, C. H., Jonker, H., van den Broeck, H., Molthoff, J., van Tunen, A., … Bovy, A. (2006). Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnology Journal, 4(4), 433-444. doi:10.1111/j.1467-7652.2006.00192.x

Fischhoff, D. A., Bowdish, K. S., Perlak, F. J., Marrone, P. G., McCormick, S. M., Niedermeyer, J. G., … Fraley, R. T. (1987). Insect Tolerant Transgenic Tomato Plants. Nature Biotechnology, 5(8), 807-813. doi:10.1038/nbt0887-807

KIM, J. W. (1994). Disease Resistance in Tobacco and Tomato Plants Transformed with the Tomato Spotted Wilt Virus Nucleocapsid Gene. Plant Disease, 78(6), 615. doi:10.1094/pd-78-0615

Fillatti, J. J., Kiser, J., Rose, R., & Comai, L. (1987). Efficient Transfer of a Glyphosate Tolerance Gene into Tomato Using a Binary Agrobacterium Tumefaciens Vector. Nature Biotechnology, 5(7), 726-730. doi:10.1038/nbt0787-726

Z.-Q., Z., F.-Q., C., Y.-X., L., & G.-X., J. (2002). Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Reports, 21(2), 141-146. doi:10.1007/s00299-002-0489-1

Roy, R., Purty, R. S., Agrawal, V., & Gupta, S. C. (2005). Transformation of tomato cultivar ‘Pusa Ruby’ with bspA gene from Populus tremula for drought tolerance. Plant Cell, Tissue and Organ Culture, 84(1), 56-68. doi:10.1007/s11240-005-9000-3

Sheehy, R. E., Kramer, M., & Hiatt, W. R. (1988). Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proceedings of the National Academy of Sciences, 85(23), 8805-8809. doi:10.1073/pnas.85.23.8805

Klee, H. J. (1993). Ripening Physiology of Fruit from Transgenic Tomato (Lycopersicon esculentum) Plants with Reduced Ethylene Synthesis. Plant Physiology, 102(3), 911-916. doi:10.1104/pp.102.3.911

Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., & Kishore, G. M. (1991). Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. The Plant Cell, 3(11), 1187-1193. doi:10.1105/tpc.3.11.1187

Arrillaga, I., Gil-Mascarell, R., Gisbert, C., Sales, E., Montesinos, C., Serrano, R., & Moreno, V. (1998). Expression of the yeast HAL2 gene in tomato increases the in vitro salt tolerance of transgenic progenies. Plant Science, 136(2), 219-226. doi:10.1016/s0168-9452(98)00122-8

García-Abellan, J. O., Egea, I., Pineda, B., Sanchez-Bel, P., Belver, A., Garcia-Sogo, B., … Bolarin, M. C. (2014). Heterologous expression of the yeastHAL5gene in tomato enhances salt tolerance by reducing shoot Na+accumulation in the long term. Physiologia Plantarum, 152(4), 700-713. doi:10.1111/ppl.12217

Safdar, N., Yasmeen, A., & Mirza, B. (2010). An insight into functional genomics of transgenic lines of tomato cv Rio Grande harbouring yeast halotolerance genes. Plant Biology, 13(4), 620-631. doi:10.1111/j.1438-8677.2010.00412.x

Sade, N., Vinocur, B. J., Diber, A., Shatil, A., Ronen, G., Nissan, H., … Moshelion, M. (2008). Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytologist, 181(3), 651-661. doi:10.1111/j.1469-8137.2008.02689.x

Goel, D., Singh, A. K., Yadav, V., Babbar, S. B., & Bansal, K. C. (2010). Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma, 245(1-4), 133-141. doi:10.1007/s00709-010-0158-0

Goel, D., Singh, A. K., Yadav, V., Babbar, S. B., Murata, N., & Bansal, K. C. (2011). Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. Journal of Plant Physiology, 168(11), 1286-1294. doi:10.1016/j.jplph.2011.01.010

Mishra, K. B., Iannacone, R., Petrozza, A., Mishra, A., Armentano, N., La Vecchia, G., … Nedbal, L. (2012). Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Science, 182, 79-86. doi:10.1016/j.plantsci.2011.03.022

Seo, Y. S., Choi, J. Y., Kim, S. J., Kim, E. Y., Shin, J. S., & Kim, W. T. (2012). Constitutive expression of CaRma1H1, a hot pepper ER-localized RING E3 ubiquitin ligase, increases tolerance to drought and salt stresses in transgenic tomato plants. Plant Cell Reports, 31(9), 1659-1665. doi:10.1007/s00299-012-1278-0

Muñoz-Mayor, A., Pineda, B., Garcia-Abellán, J. O., Antón, T., Garcia-Sogo, B., Sanchez-Bel, P., … Bolarin, M. C. (2012). Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. Journal of Plant Physiology, 169(5), 459-468. doi:10.1016/j.jplph.2011.11.018

Zhang, X., Zou, Z., Gong, P., Zhang, J., Ziaf, K., Li, H., … Ye, Z. (2010). Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnology Letters, 33(2), 403-409. doi:10.1007/s10529-010-0436-0

Kanhonou, R., Serrano, R., & Ros Palau, R. (2001). Plant Molecular Biology, 47(5), 571-579. doi:10.1023/a:1012227913356

Rosa Téllez, S., Kanhonou, R., Castellote Bellés, C., Serrano, R., Alepuz, P., & Ros, R. (2020). RNA-Binding Proteins as Targets to Improve Salt Stress Tolerance in Crops. Agronomy, 10(2), 250. doi:10.3390/agronomy10020250

Brunelli, J. P., & Pall, M. L. (1993). A series of yeast shuttle vectors for expression of cDNAs and other DNA sequences. Yeast, 9(12), 1299-1308. doi:10.1002/yea.320091203

Gietz, D., Jean, A. S., Woods, R. A., & Schiestl, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Research, 20(6), 1425-1425. doi:10.1093/nar/20.6.1425

Hoeberichts, F. A., Perez-Valle, J., Montesinos, C., Mulet, J. M., Planes, M. D., Hueso, G., … Serrano, R. (2010). The role of K+ and H+ transport systems during glucose- and H2O2-induced cell death in Saccharomyces cerevisiae. Yeast, 27(9), 713-725. doi:10.1002/yea.1767

Sayle, R. (1995). RASMOL: biomolecular graphics for all. Trends in Biochemical Sciences, 20(9), 374-376. doi:10.1016/s0968-0004(00)89080-5

Hoy, J. A., & Hargrove, M. S. (2008). The structure and function of plant hemoglobins. Plant Physiology and Biochemistry, 46(3), 371-379. doi:10.1016/j.plaphy.2007.12.016

Kay, R., Chan, A., Daly, M., & McPherson, J. (1987). Duplication of CaMV 35 S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science, 236(4806), 1299-1302. doi:10.1126/science.236.4806.1299

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262

Bissoli, G., Niñoles, R., Fresquet, S., Palombieri, S., Bueso, E., Rubio, L., … Serrano, R. (2012). Peptidyl-prolyl cis-trans isomerase ROF2 modulates intracellular pH homeostasis in Arabidopsis. The Plant Journal, 70(4), 704-716. doi:10.1111/j.1365-313x.2012.04921.x

Witte, C.-P., No�l, L., Gielbert, J., Parker, J., & Romeis, T. (2004). Rapid one-step protein purification from plant material using the eight-amino acid StrepII epitope. Plant Molecular Biology, 55(1), 135-147. doi:10.1007/s11103-004-0501-y

Saporta, R., Bou, C., Frías, V., & Mulet, J. (2019). A Method for a Fast Evaluation of the Biostimulant Potential of Different Natural Extracts for Promoting Growth or Tolerance against Abiotic Stress. Agronomy, 9(3), 143. doi:10.3390/agronomy9030143

Trujillo-Moya, C., & Gisbert, C. (2012). The influence of ethylene and ethylene modulators on shoot organogenesis in tomato. Plant Cell, Tissue and Organ Culture (PCTOC), 111(1), 41-48. doi:10.1007/s11240-012-0168-z

Koncz, C., & Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics MGG, 204(3), 383-396. doi:10.1007/bf00331014

Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R., & Mulet, J. M. (2013). Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 13(1), 97-106. doi:10.1111/1567-1364.12013

Citation for the Real Statistics Software or Website. Real Statistics Using Excelhttp://www.real-statistics.com/appendix/citation-real-statistics-software-website/

Tukey, J. W. (1949). Comparing Individual Means in the Analysis of Variance. Biometrics, 5(2), 99. doi:10.2307/3001913

Forment, J., Naranjo, M. A., Roldan, M., Serrano, R., & Vicente, O. (2002). Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. The Plant Journal, 30(5), 511-519. doi:10.1046/j.1365-313x.2002.01311.x

Hunt, P. W., Watts, R. A., Trevaskis, B., Llewelyn, D. J., Burnell, J., Dennis, E. S., & Peacock, W. J. (2001). Plant Molecular Biology, 47(5), 677-692. doi:10.1023/a:1012440926982

Dohm, J. C., Minoche, A. E., Holtgräwe, D., Capella-Gutiérrez, S., Zakrzewski, F., Tafer, H., … Himmelbauer, H. (2013). The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 505(7484), 546-549. doi:10.1038/nature12817

Hebelstrup, K. H., Igamberdiev, A. U., & Hill, R. D. (2007). Metabolic effects of hemoglobin gene expression in plants. Gene, 398(1-2), 86-93. doi:10.1016/j.gene.2007.01.039

Hargrove, M. S., Brucker, E. A., Stec, B., Sarath, G., Arredondo-Peter, R., Klucas, R. V., … Phillips, G. N. (2000). Crystal structure of a nonsymbiotic plant hemoglobin. Structure, 8(9), 1005-1014. doi:10.1016/s0969-2126(00)00194-5

Leiva-Eriksson, N., Pin, P. A., Kraft, T., Dohm, J. C., Minoche, A. E., Himmelbauer, H., & Bülow, L. (2014). Differential Expression Patterns of Non-Symbiotic Hemoglobins in Sugar Beet (Beta vulgaris ssp. vulgaris). Plant and Cell Physiology, 55(4), 834-844. doi:10.1093/pcp/pcu027

NARANJO, M. A., FORMENT, J., ROLDAN, M., SERRANO, R., & VICENTE, O. (2006). Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell and Environment, 29(10), 1890-1900. doi:10.1111/j.1365-3040.2006.01565.x

Rausell, A., Kanhonou, R., Yenush, L., Serrano, R., & Ros, R. (2003). The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal, 34(3), 257-267. doi:10.1046/j.1365-313x.2003.01719.x

Rus, A. M., Estañ, M. T., Gisbert, C., Garcia-Sogo, B., Serrano, R., Caro, M., … Bolarín, M. C. (2001). Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+ /Na+ selectivity under salt stress. Plant, Cell & Environment, 24(8), 875-880. doi:10.1046/j.1365-3040.2001.00719.x

Hoogewijs, D., Dewilde, S., Vierstraete, A., Moens, L., & Vinogradov, S. N. (2012). A Phylogenetic Analysis of the Globins in Fungi. PLoS ONE, 7(2), e31856. doi:10.1371/journal.pone.0031856

Bai, X., Long, J., He, X., Yan, J., Chen, X., Tan, Y., … Xu, H. (2016). Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Scientific Reports, 6(1). doi:10.1038/srep26400

Evangelou, E., Tsadilas, C., Tserlikakis, N., Tsitouras, A., & Kyritsis, A. (2016). Water Footprint of Industrial Tomato Cultivations in the Pinios River Basin: Soil Properties Interactions. Water, 8(11), 515. doi:10.3390/w8110515

(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119

Chen, Y., & Barak, P. (1982). Iron Nutrition of Plants in Calcareous Soils. Advances in Agronomy Volume 35, 217-240. doi:10.1016/s0065-2113(08)60326-0

Dutt, M., Dhekney, S. A., Soriano, L., Kandel, R., & Grosser, J. W. (2014). Temporal and spatial control of gene expression in horticultural crops. Horticulture Research, 1(1). doi:10.1038/hortres.2014.47




This item appears in the following Collection(s)

Show full item record