- -

Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses

Mostrar el registro completo del ítem

Boscaiu, M.; Fita, A. (2020). Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses. Agronomy. 10(9):1-7. https://doi.org/10.3390/agronomy10091308

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166997

Ficheros en el ítem

Metadatos del ítem

Título: Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses
Autor: Boscaiu, Monica Fita, Ana
Entidad UPV: Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Abiotic stress represents a main constraint for agriculture, affecting plant growth and productivity. Drought and soil salinity, especially, are major causes of reduction of crop yields and food production worldwide. ...[+]
Palabras clave: Salinity , Drought , Heat stress , Flooding , Nutrient stress , ROS , Cold stress
Derechos de uso: Reconocimiento (by)
Fuente:
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy10091308
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/agronomy10091308
Tipo: Artículo

References

Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J. M., Fischhoff, D. A., Hodges, C. N., … Zhu, J.-K. (2010). Radically Rethinking Agriculture for the 21st Century. Science, 327(5967), 833-834. doi:10.1126/science.1186834

Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978

Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 [+]
Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J. M., Fischhoff, D. A., Hodges, C. N., … Zhu, J.-K. (2010). Radically Rethinking Agriculture for the 21st Century. Science, 327(5967), 833-834. doi:10.1126/science.1186834

Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978

Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0

Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.x

Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911

Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51(1). doi:10.1186/s40659-018-0198-z

Hernández, J. A. (2019). Salinity Tolerance in Plants: Trends and Perspectives. International Journal of Molecular Sciences, 20(10), 2408. doi:10.3390/ijms20102408

Nemeskéri, E., & Helyes, L. (2019). Physiological Responses of Selected Vegetable Crop Species to Water Stress. Agronomy, 9(8), 447. doi:10.3390/agronomy9080447

Ketehouli, T., Idrice Carther, K. F., Noman, M., Wang, F.-W., Li, X.-W., & Li, H.-Y. (2019). Adaptation of Plants to Salt Stress: Characterization of Na+ and K+ Transporters and Role of CBL Gene Family in Regulating Salt Stress Response. Agronomy, 9(11), 687. doi:10.3390/agronomy9110687

Thangthong, N., Jogloy, S., Punjansing, T., Kvien, C. K., Kesmala, T., & Vorasoot, N. (2019). Changes in Root Anatomy of Peanut (Arachis hypogaea L.) under Different Durations of Early Season Drought. Agronomy, 9(5), 215. doi:10.3390/agronomy9050215

Zeeshan, M., Lu, M., Sehar, S., Holford, P., & Wu, F. (2020). Comparison of Biochemical, Anatomical, Morphological, and Physiological Responses to Salinity Stress in Wheat and Barley Genotypes Deferring in Salinity Tolerance. Agronomy, 10(1), 127. doi:10.3390/agronomy10010127

Brenes, M., Solana, A., Boscaiu, M., Fita, A., Vicente, O., Calatayud, Á., … Plazas, M. (2020). Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy, 10(5), 651. doi:10.3390/agronomy10050651

Fess, T. L., Kotcon, J. B., & Benedito, V. A. (2011). Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population. Sustainability, 3(10), 1742-1772. doi:10.3390/su3101742

Arteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M., & Vicente, O. (2020). The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy, 10(6), 817. doi:10.3390/agronomy10060817

Sumalan, R. M., Ciulca, S. I., Poiana, M. A., Moigradean, D., Radulov, I., Negrea, M., … Sumalan, R. L. (2020). The Antioxidant Profile Evaluation of Some Tomato Landraces with Soil Salinity Tolerance Correlated with High Nutraceuticaland Functional Value. Agronomy, 10(4), 500. doi:10.3390/agronomy10040500

Kondwakwenda, A., Sibiya, J., Zengeni, R., Musvosvi, C., & Tesfay, S. (2019). Screening of Provitamin-A Maize Inbred Lines for Drought Tolerance Using β-carotene Content: Morphophysiological and Biochemical Traits. Agronomy, 9(11), 692. doi:10.3390/agronomy9110692

Urano, K., Kurihara, Y., Seki, M., & Shinozaki, K. (2010). ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology, 13(2), 132-138. doi:10.1016/j.pbi.2009.12.006

Hou, Yin, Lu, Song, Wang, Wei, … Fang. (2019). Transcriptomic Analysis Reveals the Temporal and Spatial Changes in Physiological Process and Gene Expression in Common Buckwheat (Fagopyrum esculentum Moench) Grown under Drought Stress. Agronomy, 9(10), 569. doi:10.3390/agronomy9100569

Jia, S., Li, H., Jiang, Y., Tang, Y., Zhao, G., Zhang, Y., … Shao, R. (2020). Transcriptomic Analysis of Female Panicles Reveals Gene Expression Responses to Drought Stress in Maize (Zea mays L.). Agronomy, 10(2), 313. doi:10.3390/agronomy10020313

Liu, C., Zhao, Y., Zhao, X., Wang, J., Gu, M., & Yuan, Z. (2019). Transcriptomic Profiling of Pomegranate Provides Insights into Salt Tolerance. Agronomy, 10(1), 44. doi:10.3390/agronomy10010044

Moradtalab, N., Hajiboland, R., Aliasgharzad, N., Hartmann, T. E., & Neumann, G. (2019). Silicon and the Association with an Arbuscular-Mycorrhizal Fungus (Rhizophagus clarus) Mitigate the Adverse Effects of Drought Stress on Strawberry. Agronomy, 9(1), 41. doi:10.3390/agronomy9010041

Minh, B., Linh, N., Hanh, H., Hien, L., Thang, N., Hai, N., & Hue, H. (2019). A LEA Gene from a Vietnamese Maize Landrace Can Enhance the Drought Tolerance of Transgenic Maize and Tobacco. Agronomy, 9(2), 62. doi:10.3390/agronomy9020062

Abdelaal, K. A., EL-Maghraby, L. M., Elansary, H., Hafez, Y. M., Ibrahim, E. I., El-Banna, M., … Elkelish, A. (2019). Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems. Agronomy, 10(1), 26. doi:10.3390/agronomy10010026

Loreti, E., van Veen, H., & Perata, P. (2016). Plant responses to flooding stress. Current Opinion in Plant Biology, 33, 64-71. doi:10.1016/j.pbi.2016.06.005

Bashar, K., Tareq, M., Amin, M., Honi, U., Tahjib-Ul-Arif, M., Sadat, M., & Hossen, Q. (2019). Phytohormone-Mediated Stomatal Response, Escape and Quiescence Strategies in Plants under Flooding Stress. Agronomy, 9(2), 43. doi:10.3390/agronomy9020043

Vwioko, E. D., El-Esawi, M. A., Imoni, M. E., Al-Ghamdi, A. A., Ali, H. M., El-Sheekh, M. M., … Al-Dosary, M. A. (2019). Sodium Azide Priming Enhances Waterlogging Stress Tolerance in Okra (Abelmoschus esculentus L.). Agronomy, 9(11), 679. doi:10.3390/agronomy9110679

Eremina, M., Rozhon, W., & Poppenberger, B. (2015). Hormonal control of cold stress responses in plants. Cellular and Molecular Life Sciences, 73(4), 797-810. doi:10.1007/s00018-015-2089-6

Li, Y., Zhang, Q., Ou, L., Ji, D., Liu, T., Lan, R., … Jin, L. (2020). Response to the Cold Stress Signaling of the Tea Plant (Camellia sinensis) Elicited by Chitosan Oligosaccharide. Agronomy, 10(6), 915. doi:10.3390/agronomy10060915

Anwar, A., Wang, J., Yu, X., He, C., & Li, Y. (2020). Substrate Application of 5-Aminolevulinic Acid Enhanced Low-temperature and Weak-light Stress Tolerance in Cucumber (Cucumis sativus L.). Agronomy, 10(4), 472. doi:10.3390/agronomy10040472

Diffenbaugh, N. S., Pal, J. S., Giorgi, F., & Gao, X. (2007). Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research Letters, 34(11). doi:10.1029/2007gl030000

Martínez-Nieto, M. I., Estrelles, E., Prieto-Mossi, J., Roselló, J., & Soriano, P. (2020). Resilience Capacity Assessment of the Traditional Lima Bean (Phaseolus lunatus L.) Landraces Facing Climate Change. Agronomy, 10(6), 758. doi:10.3390/agronomy10060758

Nelimor, C., Badu-Apraku, B., Tetteh, A. Y., Garcia-Oliveira, A. L., & N’guetta, A. S.-P. (2020). Assessing the Potential of Extra-Early Maturing Landraces for Improving Tolerance to Drought, Heat, and Both Combined Stresses in Maize. Agronomy, 10(3), 318. doi:10.3390/agronomy10030318

Probert, M. ., & Keating, B. . (2000). What soil constraints should be included in crop and forest models? Agriculture, Ecosystems & Environment, 82(1-3), 273-281. doi:10.1016/s0167-8809(00)00231-0

Pereira-Dias, L., Gil-Villar, D., Castell-Zeising, V., Quiñones, A., Calatayud, Á., Rodríguez-Burruezo, A., & Fita, A. (2020). Main Root Adaptations in Pepper Germplasm (Capsicum spp.) to Phosphorus Low-Input Conditions. Agronomy, 10(5), 637. doi:10.3390/agronomy10050637

Hefferon, K. (2019). Biotechnological Approaches for Generating Zinc-Enriched Crops to Combat Malnutrition. Nutrients, 11(2), 253. doi:10.3390/nu11020253

Szopiński, M., Sitko, K., Gieroń, Ż., Rusinowski, S., Corso, M., Hermans, C., … Małkowski, E. (2019). Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00748

Fatemi, H., Zaghdoud, C., Nortes, P. A., Carvajal, M., & Martínez-Ballesta, M. del C. (2020). Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants. Agronomy, 10(3), 450. doi:10.3390/agronomy10030450

Kong, L., Xie, Y., Hu, L., Si, J., & Wang, Z. (2017). Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Scientific Reports, 7(1). doi:10.1038/srep43363

Gil-Ortiz, R., Naranjo, M. Á., Ruiz-Navarro, A., Caballero-Molada, M., Atares, S., García, C., & Vicente, O. (2020). New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy, 10(3), 438. doi:10.3390/agronomy10030438

Muñoz, M., Torres-Pagán, N., Peiró, R., Guijarro, R., Sánchez-Moreiras, A. M., & Verdeguer, M. (2020). Phytotoxic Effects of Three Natural Compounds: Pelargonic Acid, Carvacrol, and Cinnamic Aldehyde, against Problematic Weeds in Mediterranean Crops. Agronomy, 10(6), 791. doi:10.3390/agronomy10060791

Mayoral, O., Solbes, J., Cantó, J., & Pina, T. (2020). What Has Been Thought and Taught on the Lunar Influence on Plants in Agriculture? Perspective from Physics and Biology. Agronomy, 10(7), 955. doi:10.3390/agronomy10070955

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem