- -

Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boscaiu, Monica es_ES
dc.contributor.author Fita, Ana es_ES
dc.date.accessioned 2021-06-01T03:31:38Z
dc.date.available 2021-06-01T03:31:38Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166997
dc.description.abstract [EN] Abiotic stress represents a main constraint for agriculture, affecting plant growth and productivity. Drought and soil salinity, especially, are major causes of reduction of crop yields and food production worldwide. It is not unexpected, therefore, that the study of plant responses to abiotic stress and stress tolerance mechanisms is one of the most active research fields in plant biology. This Special Issue compiles 22 research papers and 4 reviews covering different aspects of these responses and mechanisms, addressing environmental stress factors such as drought, salinity, flooding, heat and cold stress, deficiency or toxicity of compounds in the soil (e.g., macro and micronutrients), and combination of different stresses. The approaches used are also diverse, including, among others, the analysis of agronomic traits based on morphological characteristics, physiological and biochemical studies, and transcriptomics or transgenics. Despite its complexity, we believe that this Special Issue provides a useful overview of the topic, including basic information on the mechanisms of abiotic stress tolerance as well as practical aspects such as the alleviation of the deleterious effects of stress by different means, or the use of local landraces as a source of genetic material adapted to combined stresses. This knowledge should help to develop the agriculture of the (near) future, sustainable and better adapted to the conditions ahead, in a scenario of global warming and environmental pollution. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Agronomy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Salinity es_ES
dc.subject Drought es_ES
dc.subject Heat stress es_ES
dc.subject Flooding es_ES
dc.subject Nutrient stress es_ES
dc.subject ROS es_ES
dc.subject Cold stress es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification BOTANICA es_ES
dc.title Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/agronomy10091308 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Boscaiu, M.; Fita, A. (2020). Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses. Agronomy. 10(9):1-7. https://doi.org/10.3390/agronomy10091308 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/agronomy10091308 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2073-4395 es_ES
dc.relation.pasarela S\417425 es_ES
dc.description.references Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J. M., Fischhoff, D. A., Hodges, C. N., … Zhu, J.-K. (2010). Radically Rethinking Agriculture for the 21st Century. Science, 327(5967), 833-834. doi:10.1126/science.1186834 es_ES
dc.description.references Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978 es_ES
dc.description.references Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 es_ES
dc.description.references Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029 es_ES
dc.description.references Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.x es_ES
dc.description.references Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 es_ES
dc.description.references Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51(1). doi:10.1186/s40659-018-0198-z es_ES
dc.description.references Hernández, J. A. (2019). Salinity Tolerance in Plants: Trends and Perspectives. International Journal of Molecular Sciences, 20(10), 2408. doi:10.3390/ijms20102408 es_ES
dc.description.references Nemeskéri, E., & Helyes, L. (2019). Physiological Responses of Selected Vegetable Crop Species to Water Stress. Agronomy, 9(8), 447. doi:10.3390/agronomy9080447 es_ES
dc.description.references Ketehouli, T., Idrice Carther, K. F., Noman, M., Wang, F.-W., Li, X.-W., & Li, H.-Y. (2019). Adaptation of Plants to Salt Stress: Characterization of Na+ and K+ Transporters and Role of CBL Gene Family in Regulating Salt Stress Response. Agronomy, 9(11), 687. doi:10.3390/agronomy9110687 es_ES
dc.description.references Thangthong, N., Jogloy, S., Punjansing, T., Kvien, C. K., Kesmala, T., & Vorasoot, N. (2019). Changes in Root Anatomy of Peanut (Arachis hypogaea L.) under Different Durations of Early Season Drought. Agronomy, 9(5), 215. doi:10.3390/agronomy9050215 es_ES
dc.description.references Zeeshan, M., Lu, M., Sehar, S., Holford, P., & Wu, F. (2020). Comparison of Biochemical, Anatomical, Morphological, and Physiological Responses to Salinity Stress in Wheat and Barley Genotypes Deferring in Salinity Tolerance. Agronomy, 10(1), 127. doi:10.3390/agronomy10010127 es_ES
dc.description.references Brenes, M., Solana, A., Boscaiu, M., Fita, A., Vicente, O., Calatayud, Á., … Plazas, M. (2020). Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy, 10(5), 651. doi:10.3390/agronomy10050651 es_ES
dc.description.references Fess, T. L., Kotcon, J. B., & Benedito, V. A. (2011). Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population. Sustainability, 3(10), 1742-1772. doi:10.3390/su3101742 es_ES
dc.description.references Arteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M., & Vicente, O. (2020). The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy, 10(6), 817. doi:10.3390/agronomy10060817 es_ES
dc.description.references Sumalan, R. M., Ciulca, S. I., Poiana, M. A., Moigradean, D., Radulov, I., Negrea, M., … Sumalan, R. L. (2020). The Antioxidant Profile Evaluation of Some Tomato Landraces with Soil Salinity Tolerance Correlated with High Nutraceuticaland Functional Value. Agronomy, 10(4), 500. doi:10.3390/agronomy10040500 es_ES
dc.description.references Kondwakwenda, A., Sibiya, J., Zengeni, R., Musvosvi, C., & Tesfay, S. (2019). Screening of Provitamin-A Maize Inbred Lines for Drought Tolerance Using β-carotene Content: Morphophysiological and Biochemical Traits. Agronomy, 9(11), 692. doi:10.3390/agronomy9110692 es_ES
dc.description.references Urano, K., Kurihara, Y., Seki, M., & Shinozaki, K. (2010). ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology, 13(2), 132-138. doi:10.1016/j.pbi.2009.12.006 es_ES
dc.description.references Hou, Yin, Lu, Song, Wang, Wei, … Fang. (2019). Transcriptomic Analysis Reveals the Temporal and Spatial Changes in Physiological Process and Gene Expression in Common Buckwheat (Fagopyrum esculentum Moench) Grown under Drought Stress. Agronomy, 9(10), 569. doi:10.3390/agronomy9100569 es_ES
dc.description.references Jia, S., Li, H., Jiang, Y., Tang, Y., Zhao, G., Zhang, Y., … Shao, R. (2020). Transcriptomic Analysis of Female Panicles Reveals Gene Expression Responses to Drought Stress in Maize (Zea mays L.). Agronomy, 10(2), 313. doi:10.3390/agronomy10020313 es_ES
dc.description.references Liu, C., Zhao, Y., Zhao, X., Wang, J., Gu, M., & Yuan, Z. (2019). Transcriptomic Profiling of Pomegranate Provides Insights into Salt Tolerance. Agronomy, 10(1), 44. doi:10.3390/agronomy10010044 es_ES
dc.description.references Moradtalab, N., Hajiboland, R., Aliasgharzad, N., Hartmann, T. E., & Neumann, G. (2019). Silicon and the Association with an Arbuscular-Mycorrhizal Fungus (Rhizophagus clarus) Mitigate the Adverse Effects of Drought Stress on Strawberry. Agronomy, 9(1), 41. doi:10.3390/agronomy9010041 es_ES
dc.description.references Minh, B., Linh, N., Hanh, H., Hien, L., Thang, N., Hai, N., & Hue, H. (2019). A LEA Gene from a Vietnamese Maize Landrace Can Enhance the Drought Tolerance of Transgenic Maize and Tobacco. Agronomy, 9(2), 62. doi:10.3390/agronomy9020062 es_ES
dc.description.references Abdelaal, K. A., EL-Maghraby, L. M., Elansary, H., Hafez, Y. M., Ibrahim, E. I., El-Banna, M., … Elkelish, A. (2019). Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems. Agronomy, 10(1), 26. doi:10.3390/agronomy10010026 es_ES
dc.description.references Loreti, E., van Veen, H., & Perata, P. (2016). Plant responses to flooding stress. Current Opinion in Plant Biology, 33, 64-71. doi:10.1016/j.pbi.2016.06.005 es_ES
dc.description.references Bashar, K., Tareq, M., Amin, M., Honi, U., Tahjib-Ul-Arif, M., Sadat, M., & Hossen, Q. (2019). Phytohormone-Mediated Stomatal Response, Escape and Quiescence Strategies in Plants under Flooding Stress. Agronomy, 9(2), 43. doi:10.3390/agronomy9020043 es_ES
dc.description.references Vwioko, E. D., El-Esawi, M. A., Imoni, M. E., Al-Ghamdi, A. A., Ali, H. M., El-Sheekh, M. M., … Al-Dosary, M. A. (2019). Sodium Azide Priming Enhances Waterlogging Stress Tolerance in Okra (Abelmoschus esculentus L.). Agronomy, 9(11), 679. doi:10.3390/agronomy9110679 es_ES
dc.description.references Eremina, M., Rozhon, W., & Poppenberger, B. (2015). Hormonal control of cold stress responses in plants. Cellular and Molecular Life Sciences, 73(4), 797-810. doi:10.1007/s00018-015-2089-6 es_ES
dc.description.references Li, Y., Zhang, Q., Ou, L., Ji, D., Liu, T., Lan, R., … Jin, L. (2020). Response to the Cold Stress Signaling of the Tea Plant (Camellia sinensis) Elicited by Chitosan Oligosaccharide. Agronomy, 10(6), 915. doi:10.3390/agronomy10060915 es_ES
dc.description.references Anwar, A., Wang, J., Yu, X., He, C., & Li, Y. (2020). Substrate Application of 5-Aminolevulinic Acid Enhanced Low-temperature and Weak-light Stress Tolerance in Cucumber (Cucumis sativus L.). Agronomy, 10(4), 472. doi:10.3390/agronomy10040472 es_ES
dc.description.references Diffenbaugh, N. S., Pal, J. S., Giorgi, F., & Gao, X. (2007). Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research Letters, 34(11). doi:10.1029/2007gl030000 es_ES
dc.description.references Martínez-Nieto, M. I., Estrelles, E., Prieto-Mossi, J., Roselló, J., & Soriano, P. (2020). Resilience Capacity Assessment of the Traditional Lima Bean (Phaseolus lunatus L.) Landraces Facing Climate Change. Agronomy, 10(6), 758. doi:10.3390/agronomy10060758 es_ES
dc.description.references Nelimor, C., Badu-Apraku, B., Tetteh, A. Y., Garcia-Oliveira, A. L., & N’guetta, A. S.-P. (2020). Assessing the Potential of Extra-Early Maturing Landraces for Improving Tolerance to Drought, Heat, and Both Combined Stresses in Maize. Agronomy, 10(3), 318. doi:10.3390/agronomy10030318 es_ES
dc.description.references Probert, M. ., & Keating, B. . (2000). What soil constraints should be included in crop and forest models? Agriculture, Ecosystems & Environment, 82(1-3), 273-281. doi:10.1016/s0167-8809(00)00231-0 es_ES
dc.description.references Pereira-Dias, L., Gil-Villar, D., Castell-Zeising, V., Quiñones, A., Calatayud, Á., Rodríguez-Burruezo, A., & Fita, A. (2020). Main Root Adaptations in Pepper Germplasm (Capsicum spp.) to Phosphorus Low-Input Conditions. Agronomy, 10(5), 637. doi:10.3390/agronomy10050637 es_ES
dc.description.references Hefferon, K. (2019). Biotechnological Approaches for Generating Zinc-Enriched Crops to Combat Malnutrition. Nutrients, 11(2), 253. doi:10.3390/nu11020253 es_ES
dc.description.references Szopiński, M., Sitko, K., Gieroń, Ż., Rusinowski, S., Corso, M., Hermans, C., … Małkowski, E. (2019). Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00748 es_ES
dc.description.references Fatemi, H., Zaghdoud, C., Nortes, P. A., Carvajal, M., & Martínez-Ballesta, M. del C. (2020). Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants. Agronomy, 10(3), 450. doi:10.3390/agronomy10030450 es_ES
dc.description.references Kong, L., Xie, Y., Hu, L., Si, J., & Wang, Z. (2017). Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Scientific Reports, 7(1). doi:10.1038/srep43363 es_ES
dc.description.references Gil-Ortiz, R., Naranjo, M. Á., Ruiz-Navarro, A., Caballero-Molada, M., Atares, S., García, C., & Vicente, O. (2020). New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy, 10(3), 438. doi:10.3390/agronomy10030438 es_ES
dc.description.references Muñoz, M., Torres-Pagán, N., Peiró, R., Guijarro, R., Sánchez-Moreiras, A. M., & Verdeguer, M. (2020). Phytotoxic Effects of Three Natural Compounds: Pelargonic Acid, Carvacrol, and Cinnamic Aldehyde, against Problematic Weeds in Mediterranean Crops. Agronomy, 10(6), 791. doi:10.3390/agronomy10060791 es_ES
dc.description.references Mayoral, O., Solbes, J., Cantó, J., & Pina, T. (2020). What Has Been Thought and Taught on the Lunar Influence on Plants in Agriculture? Perspective from Physics and Biology. Agronomy, 10(7), 955. doi:10.3390/agronomy10070955 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem