Mostrar el registro sencillo del ítem
dc.contributor.author | Boscaiu, Monica | es_ES |
dc.contributor.author | Fita, Ana | es_ES |
dc.date.accessioned | 2021-06-01T03:31:38Z | |
dc.date.available | 2021-06-01T03:31:38Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/166997 | |
dc.description.abstract | [EN] Abiotic stress represents a main constraint for agriculture, affecting plant growth and productivity. Drought and soil salinity, especially, are major causes of reduction of crop yields and food production worldwide. It is not unexpected, therefore, that the study of plant responses to abiotic stress and stress tolerance mechanisms is one of the most active research fields in plant biology. This Special Issue compiles 22 research papers and 4 reviews covering different aspects of these responses and mechanisms, addressing environmental stress factors such as drought, salinity, flooding, heat and cold stress, deficiency or toxicity of compounds in the soil (e.g., macro and micronutrients), and combination of different stresses. The approaches used are also diverse, including, among others, the analysis of agronomic traits based on morphological characteristics, physiological and biochemical studies, and transcriptomics or transgenics. Despite its complexity, we believe that this Special Issue provides a useful overview of the topic, including basic information on the mechanisms of abiotic stress tolerance as well as practical aspects such as the alleviation of the deleterious effects of stress by different means, or the use of local landraces as a source of genetic material adapted to combined stresses. This knowledge should help to develop the agriculture of the (near) future, sustainable and better adapted to the conditions ahead, in a scenario of global warming and environmental pollution. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Salinity | es_ES |
dc.subject | Drought | es_ES |
dc.subject | Heat stress | es_ES |
dc.subject | Flooding | es_ES |
dc.subject | Nutrient stress | es_ES |
dc.subject | ROS | es_ES |
dc.subject | Cold stress | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.title | Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy10091308 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Boscaiu, M.; Fita, A. (2020). Physiological and Molecular Characterization of Crop Resistance to Abiotic Stresses. Agronomy. 10(9):1-7. https://doi.org/10.3390/agronomy10091308 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy10091308 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\417425 | es_ES |
dc.description.references | Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J. M., Fischhoff, D. A., Hodges, C. N., … Zhu, J.-K. (2010). Radically Rethinking Agriculture for the 21st Century. Science, 327(5967), 833-834. doi:10.1126/science.1186834 | es_ES |
dc.description.references | Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978 | es_ES |
dc.description.references | Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 | es_ES |
dc.description.references | Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029 | es_ES |
dc.description.references | Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.x | es_ES |
dc.description.references | Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 | es_ES |
dc.description.references | Khan, A., Pan, X., Najeeb, U., Tan, D. K. Y., Fahad, S., Zahoor, R., & Luo, H. (2018). Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biological Research, 51(1). doi:10.1186/s40659-018-0198-z | es_ES |
dc.description.references | Hernández, J. A. (2019). Salinity Tolerance in Plants: Trends and Perspectives. International Journal of Molecular Sciences, 20(10), 2408. doi:10.3390/ijms20102408 | es_ES |
dc.description.references | Nemeskéri, E., & Helyes, L. (2019). Physiological Responses of Selected Vegetable Crop Species to Water Stress. Agronomy, 9(8), 447. doi:10.3390/agronomy9080447 | es_ES |
dc.description.references | Ketehouli, T., Idrice Carther, K. F., Noman, M., Wang, F.-W., Li, X.-W., & Li, H.-Y. (2019). Adaptation of Plants to Salt Stress: Characterization of Na+ and K+ Transporters and Role of CBL Gene Family in Regulating Salt Stress Response. Agronomy, 9(11), 687. doi:10.3390/agronomy9110687 | es_ES |
dc.description.references | Thangthong, N., Jogloy, S., Punjansing, T., Kvien, C. K., Kesmala, T., & Vorasoot, N. (2019). Changes in Root Anatomy of Peanut (Arachis hypogaea L.) under Different Durations of Early Season Drought. Agronomy, 9(5), 215. doi:10.3390/agronomy9050215 | es_ES |
dc.description.references | Zeeshan, M., Lu, M., Sehar, S., Holford, P., & Wu, F. (2020). Comparison of Biochemical, Anatomical, Morphological, and Physiological Responses to Salinity Stress in Wheat and Barley Genotypes Deferring in Salinity Tolerance. Agronomy, 10(1), 127. doi:10.3390/agronomy10010127 | es_ES |
dc.description.references | Brenes, M., Solana, A., Boscaiu, M., Fita, A., Vicente, O., Calatayud, Á., … Plazas, M. (2020). Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy, 10(5), 651. doi:10.3390/agronomy10050651 | es_ES |
dc.description.references | Fess, T. L., Kotcon, J. B., & Benedito, V. A. (2011). Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population. Sustainability, 3(10), 1742-1772. doi:10.3390/su3101742 | es_ES |
dc.description.references | Arteaga, S., Yabor, L., Díez, M. J., Prohens, J., Boscaiu, M., & Vicente, O. (2020). The Use of Proline in Screening for Tolerance to Drought and Salinity in Common Bean (Phaseolus vulgaris L.) Genotypes. Agronomy, 10(6), 817. doi:10.3390/agronomy10060817 | es_ES |
dc.description.references | Sumalan, R. M., Ciulca, S. I., Poiana, M. A., Moigradean, D., Radulov, I., Negrea, M., … Sumalan, R. L. (2020). The Antioxidant Profile Evaluation of Some Tomato Landraces with Soil Salinity Tolerance Correlated with High Nutraceuticaland Functional Value. Agronomy, 10(4), 500. doi:10.3390/agronomy10040500 | es_ES |
dc.description.references | Kondwakwenda, A., Sibiya, J., Zengeni, R., Musvosvi, C., & Tesfay, S. (2019). Screening of Provitamin-A Maize Inbred Lines for Drought Tolerance Using β-carotene Content: Morphophysiological and Biochemical Traits. Agronomy, 9(11), 692. doi:10.3390/agronomy9110692 | es_ES |
dc.description.references | Urano, K., Kurihara, Y., Seki, M., & Shinozaki, K. (2010). ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology, 13(2), 132-138. doi:10.1016/j.pbi.2009.12.006 | es_ES |
dc.description.references | Hou, Yin, Lu, Song, Wang, Wei, … Fang. (2019). Transcriptomic Analysis Reveals the Temporal and Spatial Changes in Physiological Process and Gene Expression in Common Buckwheat (Fagopyrum esculentum Moench) Grown under Drought Stress. Agronomy, 9(10), 569. doi:10.3390/agronomy9100569 | es_ES |
dc.description.references | Jia, S., Li, H., Jiang, Y., Tang, Y., Zhao, G., Zhang, Y., … Shao, R. (2020). Transcriptomic Analysis of Female Panicles Reveals Gene Expression Responses to Drought Stress in Maize (Zea mays L.). Agronomy, 10(2), 313. doi:10.3390/agronomy10020313 | es_ES |
dc.description.references | Liu, C., Zhao, Y., Zhao, X., Wang, J., Gu, M., & Yuan, Z. (2019). Transcriptomic Profiling of Pomegranate Provides Insights into Salt Tolerance. Agronomy, 10(1), 44. doi:10.3390/agronomy10010044 | es_ES |
dc.description.references | Moradtalab, N., Hajiboland, R., Aliasgharzad, N., Hartmann, T. E., & Neumann, G. (2019). Silicon and the Association with an Arbuscular-Mycorrhizal Fungus (Rhizophagus clarus) Mitigate the Adverse Effects of Drought Stress on Strawberry. Agronomy, 9(1), 41. doi:10.3390/agronomy9010041 | es_ES |
dc.description.references | Minh, B., Linh, N., Hanh, H., Hien, L., Thang, N., Hai, N., & Hue, H. (2019). A LEA Gene from a Vietnamese Maize Landrace Can Enhance the Drought Tolerance of Transgenic Maize and Tobacco. Agronomy, 9(2), 62. doi:10.3390/agronomy9020062 | es_ES |
dc.description.references | Abdelaal, K. A., EL-Maghraby, L. M., Elansary, H., Hafez, Y. M., Ibrahim, E. I., El-Banna, M., … Elkelish, A. (2019). Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems. Agronomy, 10(1), 26. doi:10.3390/agronomy10010026 | es_ES |
dc.description.references | Loreti, E., van Veen, H., & Perata, P. (2016). Plant responses to flooding stress. Current Opinion in Plant Biology, 33, 64-71. doi:10.1016/j.pbi.2016.06.005 | es_ES |
dc.description.references | Bashar, K., Tareq, M., Amin, M., Honi, U., Tahjib-Ul-Arif, M., Sadat, M., & Hossen, Q. (2019). Phytohormone-Mediated Stomatal Response, Escape and Quiescence Strategies in Plants under Flooding Stress. Agronomy, 9(2), 43. doi:10.3390/agronomy9020043 | es_ES |
dc.description.references | Vwioko, E. D., El-Esawi, M. A., Imoni, M. E., Al-Ghamdi, A. A., Ali, H. M., El-Sheekh, M. M., … Al-Dosary, M. A. (2019). Sodium Azide Priming Enhances Waterlogging Stress Tolerance in Okra (Abelmoschus esculentus L.). Agronomy, 9(11), 679. doi:10.3390/agronomy9110679 | es_ES |
dc.description.references | Eremina, M., Rozhon, W., & Poppenberger, B. (2015). Hormonal control of cold stress responses in plants. Cellular and Molecular Life Sciences, 73(4), 797-810. doi:10.1007/s00018-015-2089-6 | es_ES |
dc.description.references | Li, Y., Zhang, Q., Ou, L., Ji, D., Liu, T., Lan, R., … Jin, L. (2020). Response to the Cold Stress Signaling of the Tea Plant (Camellia sinensis) Elicited by Chitosan Oligosaccharide. Agronomy, 10(6), 915. doi:10.3390/agronomy10060915 | es_ES |
dc.description.references | Anwar, A., Wang, J., Yu, X., He, C., & Li, Y. (2020). Substrate Application of 5-Aminolevulinic Acid Enhanced Low-temperature and Weak-light Stress Tolerance in Cucumber (Cucumis sativus L.). Agronomy, 10(4), 472. doi:10.3390/agronomy10040472 | es_ES |
dc.description.references | Diffenbaugh, N. S., Pal, J. S., Giorgi, F., & Gao, X. (2007). Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research Letters, 34(11). doi:10.1029/2007gl030000 | es_ES |
dc.description.references | Martínez-Nieto, M. I., Estrelles, E., Prieto-Mossi, J., Roselló, J., & Soriano, P. (2020). Resilience Capacity Assessment of the Traditional Lima Bean (Phaseolus lunatus L.) Landraces Facing Climate Change. Agronomy, 10(6), 758. doi:10.3390/agronomy10060758 | es_ES |
dc.description.references | Nelimor, C., Badu-Apraku, B., Tetteh, A. Y., Garcia-Oliveira, A. L., & N’guetta, A. S.-P. (2020). Assessing the Potential of Extra-Early Maturing Landraces for Improving Tolerance to Drought, Heat, and Both Combined Stresses in Maize. Agronomy, 10(3), 318. doi:10.3390/agronomy10030318 | es_ES |
dc.description.references | Probert, M. ., & Keating, B. . (2000). What soil constraints should be included in crop and forest models? Agriculture, Ecosystems & Environment, 82(1-3), 273-281. doi:10.1016/s0167-8809(00)00231-0 | es_ES |
dc.description.references | Pereira-Dias, L., Gil-Villar, D., Castell-Zeising, V., Quiñones, A., Calatayud, Á., Rodríguez-Burruezo, A., & Fita, A. (2020). Main Root Adaptations in Pepper Germplasm (Capsicum spp.) to Phosphorus Low-Input Conditions. Agronomy, 10(5), 637. doi:10.3390/agronomy10050637 | es_ES |
dc.description.references | Hefferon, K. (2019). Biotechnological Approaches for Generating Zinc-Enriched Crops to Combat Malnutrition. Nutrients, 11(2), 253. doi:10.3390/nu11020253 | es_ES |
dc.description.references | Szopiński, M., Sitko, K., Gieroń, Ż., Rusinowski, S., Corso, M., Hermans, C., … Małkowski, E. (2019). Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00748 | es_ES |
dc.description.references | Fatemi, H., Zaghdoud, C., Nortes, P. A., Carvajal, M., & Martínez-Ballesta, M. del C. (2020). Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants. Agronomy, 10(3), 450. doi:10.3390/agronomy10030450 | es_ES |
dc.description.references | Kong, L., Xie, Y., Hu, L., Si, J., & Wang, Z. (2017). Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Scientific Reports, 7(1). doi:10.1038/srep43363 | es_ES |
dc.description.references | Gil-Ortiz, R., Naranjo, M. Á., Ruiz-Navarro, A., Caballero-Molada, M., Atares, S., García, C., & Vicente, O. (2020). New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy, 10(3), 438. doi:10.3390/agronomy10030438 | es_ES |
dc.description.references | Muñoz, M., Torres-Pagán, N., Peiró, R., Guijarro, R., Sánchez-Moreiras, A. M., & Verdeguer, M. (2020). Phytotoxic Effects of Three Natural Compounds: Pelargonic Acid, Carvacrol, and Cinnamic Aldehyde, against Problematic Weeds in Mediterranean Crops. Agronomy, 10(6), 791. doi:10.3390/agronomy10060791 | es_ES |
dc.description.references | Mayoral, O., Solbes, J., Cantó, J., & Pina, T. (2020). What Has Been Thought and Taught on the Lunar Influence on Plants in Agriculture? Perspective from Physics and Biology. Agronomy, 10(7), 955. doi:10.3390/agronomy10070955 | es_ES |