- -

Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions

Show full item record

Simion, A.; Candu, N.; Cojocaru, B.; Coman, SM.; Bucur, C.; Forneli Rubio, MA.; Primo Arnau, AM.... (2020). Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions. Journal of Catalysis. 390:135-149. https://doi.org/10.1016/j.jcat.2020.07.033

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/166998

Files in this item

Item Metadata

Title: Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions
Author: Simion, Andrada Candu, Natalia COJOCARU, BOGDAN Coman, Simona M. Bucur, C. Forneli Rubio, Mª Amparo Primo Arnau, Ana Maria Man, Isabela Costinela PARVULESCU, VASILE I. García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
[EN] Films of few-layers defective N-doped or undoped graphene (10-15 nm) containing antimony oxide nanoparticles (15-30 nm) have been prepared on quartz by pyrolysis of alginate or chitosan adsorbing Sb(OAc)(3). XPS shows ...[+]
Subjects: Heterogeneous catalysis , Antinomy oxide nanoparticles as base , Graphene as support , Michael addition catalyst , Henry condensation catalyst
Copyrigths: Cerrado
Journal of Catalysis. (issn: 0021-9517 )
DOI: 10.1016/j.jcat.2020.07.033
Publisher version: https://doi.org/10.1016/j.jcat.2020.07.033
Project ID:
info:eu-repo/grantAgreement/UEFISCDI//PN-III-P4-ID-PCE-2016-0146 121%2F2017/
info:eu-repo/grantAgreement/UEFISCDI//PN-III-P1-1.1-TE-2016-2191 89%2F2018/
This work was supported by UEFISCDI (PN-III-P4-ID-PCE-2016-0146, nr. 121/2017 and project number PN-III-P1-1.1-TE-2016-2191, nr. 89/2018) and by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-89 ...[+]
Type: Artículo


Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005

Blanita, G., & Lazar, M. D. (2013). Review of Graphene-Supported Metal Nanoparticles as New and Efficient Heterogeneous Catalysts. Micro and Nanosystems, 5(2), 138-146. doi:10.2174/1876402911305020009

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924. doi:10.1002/adma.201001068 [+]
Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005

Blanita, G., & Lazar, M. D. (2013). Review of Graphene-Supported Metal Nanoparticles as New and Efficient Heterogeneous Catalysts. Micro and Nanosystems, 5(2), 138-146. doi:10.2174/1876402911305020009

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924. doi:10.1002/adma.201001068

Huang, C., Li, C., & Shi, G. (2012). Graphene based catalysts. Energy & Environmental Science, 5(10), 8848. doi:10.1039/c2ee22238h

Joshi, R. K., Alwarappan, S., Yoshimura, M., Sahajwalla, V., & Nishina, Y. (2015). Graphene oxide: the new membrane material. Applied Materials Today, 1(1), 1-12. doi:10.1016/j.apmt.2015.06.002

Miculescu, M., Thakur, V. K., Miculescu, F., & Voicu, S. I. (2016). Graphene-based polymer nanocomposite membranes: a review. Polymers for Advanced Technologies, 27(7), 844-859. doi:10.1002/pat.3751

Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197

Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068

Hao, P., Zhao, Z., Leng, Y., Tian, J., Sang, Y., Boughton, R. I., … Yang, B. (2015). Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy, 15, 9-23. doi:10.1016/j.nanoen.2015.02.035

Rizescu, C., Podolean, I., Albero, J., Parvulescu, V. I., Coman, S. M., Bucur, C., … Garcia, H. (2017). N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chemistry, 19(8), 1999-2005. doi:10.1039/c7gc00473g

Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653

Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819

Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505

Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561

Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908

Zhang, S., Yan, Z., Li, Y., Chen, Z., & Zeng, H. (2015). Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions. Angewandte Chemie International Edition, 54(10), 3112-3115. doi:10.1002/anie.201411246

Ji, J., Song, X., Liu, J., Yan, Z., Huo, C., Zhang, S., … Zeng, H. (2016). Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nature Communications, 7(1). doi:10.1038/ncomms13352

Gibaja, C., Rodriguez-San-Miguel, D., Ares, P., Gómez-Herrero, J., Varela, M., Gillen, R., … Zamora, F. (2016). Few-Layer Antimonene by Liquid-Phase Exfoliation. Angewandte Chemie International Edition, 55(46), 14345-14349. doi:10.1002/anie.201605298

Pumera, M., & Sofer, Z. (2017). 2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Advanced Materials, 29(21), 1605299. doi:10.1002/adma.201605299

Li, Q., Liu, M., Zhang, Y., & Liu, Z. (2015). Hexagonal Boron Nitride-Graphene Heterostructures: Synthesis and Interfacial Properties. Small, 12(1), 32-50. doi:10.1002/smll.201501766

Tang, S., Wang, H., Zhang, Y., Li, A., Xie, H., Liu, X., … Jiang, M. (2013). Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Scientific Reports, 3(1). doi:10.1038/srep02666

Rendón-Patiño, A., Doménech, A., García, H., & Primo, A. (2019). A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm × cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties. Nanoscale, 11(6), 2981-2990. doi:10.1039/c8nr08377k

Elliott, B. ., Mackay, J. ., Clay, P., & Ashby, J. (1998). An assessment of the genetic toxicology of antimony trioxide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 415(1-2), 109-117. doi:10.1016/s1383-5718(98)00065-5

McCallum, R. I. (2005). Occupational exposure to antimony compounds. Journal of Environmental Monitoring, 7(12), 1245. doi:10.1039/b509118g

Ge, Y. Z., Han, C. H., & Zhang, D. (2011). Study of PET Depolymerization Catalyzed by Metal Oxide with Different Acidity/Basicity under Microwave Irradiation. Advanced Materials Research, 233-235, 1076-1079. doi:10.4028/www.scientific.net/amr.233-235.1076

Gopiraman, M., Deng, D., Ganesh Babu, S., Hayashi, T., Karvembu, R., & Kim, I. S. (2015). Sustainable and Versatile CuO/GNS Nanocatalyst for Highly Efficient Base Free Coupling Reactions. ACS Sustainable Chemistry & Engineering, 3(10), 2478-2488. doi:10.1021/acssuschemeng.5b00542

Cirujano, F. G., López-Maya, E., Rodríguez-Albelo, M., Barea, E., Navarro, J. A. R., & De Vos, D. E. (2017). Selective One-Pot Two-Step C−C Bond Formation using Metal-Organic Frameworks with Mild Basicity as Heterogeneous Catalysts. ChemCatChem, 9(21), 4019-4023. doi:10.1002/cctc.201700784

Miguélez, J., Miyamura, H., & Kobayashi, S. (2017). A Polystyrene‐Supported Phase‐Transfer Catalyst for Asymmetric Michael Addition of Glycine‐Derived Imines to α,β‐Unsaturated Ketones. Advanced Synthesis & Catalysis, 359(17), 2897-2900. doi:10.1002/adsc.201700155

Szőllősi, G., & Kozma, V. (2018). Design of Heterogeneous Organocatalyst for the Asymmetric Michael Addition of Aldehydes to Maleimides. ChemCatChem, 10(19), 4362-4368. doi:10.1002/cctc.201800919

Szőllősi, G., Gombkötő, D., Mogyorós, A. Z., & Fülöp, F. (2018). Surface-Improved Asymmetric Michael Addition Catalyzed by Amino Acids Adsorbed on Laponite. Advanced Synthesis & Catalysis, 360(10), 1992-2004. doi:10.1002/adsc.201701627

Zhang, J., Han, X., Wu, X., Liu, Y., & Cui, Y. (2019). Chiral DHIP- and Pyrrolidine-Based Covalent Organic Frameworks for Asymmetric Catalysis. ACS Sustainable Chemistry & Engineering, 7(5), 5065-5071. doi:10.1021/acssuschemeng.8b05887

Xie, G., Zhang, J., & Ma, X. (2019). Compartmentalization of Multiple Catalysts into Outer and Inner Shells of Hollow Mesoporous Nanospheres for Heterogeneous Multi-Catalyzed/Multi-Component Asymmetric Organocascade. ACS Catalysis, 9(10), 9081-9086. doi:10.1021/acscatal.9b01608

Tahir, N., Wang, G., Onyshchenko, I., De Geyter, N., Leus, K., Morent, R., & Van Der Voort, P. (2019). High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction. Journal of Catalysis, 375, 242-248. doi:10.1016/j.jcat.2019.06.001

Paul, A., Martins, L. M. D. R. S., Karmakar, A., Kuznetsov, M. L., Novikov, A. S., Guedes da Silva, M. F. C., & Pombeiro, A. J. L. (2020). Environmentally benign benzyl alcohol oxidation and C-C coupling catalysed by amide functionalized 3D Co(II) and Zn(II) metal organic frameworks. Journal of Catalysis, 385, 324-337. doi:10.1016/j.jcat.2020.03.035

Zhou, T.-Y., Auer, B., Lee, S. J., & Telfer, S. G. (2019). Catalysts Confined in Programmed Framework Pores Enable New Transformations and Tune Reaction Efficiency and Selectivity. Journal of the American Chemical Society, 141(4), 1577-1582. doi:10.1021/jacs.8b11221

Kannappan, L., & Rajmohan, R. (2020). Synthesis of structurally enhanced magnetite cored poly(propyleneimine) dendrimer nanohybrid material and evaluation of its functionality in sustainable catalysis of condensation reactions. Reactive and Functional Polymers, 152, 104579. doi:10.1016/j.reactfunctpolym.2020.104579

Zabeti, M., Wan Daud, W. M. A., & Aroua, M. K. (2009). Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology, 90(6), 770-777. doi:10.1016/j.fuproc.2009.03.010

Okuhara, T. (2002). Water-Tolerant Solid Acid Catalysts. Chemical Reviews, 102(10), 3641-3666. doi:10.1021/cr0103569

Kiss, A. A., Dimian, A. C., & Rothenberg, G. (2006). Solid Acid Catalysts for Biodiesel Production –-Towards Sustainable Energy. Advanced Synthesis & Catalysis, 348(1-2), 75-81. doi:10.1002/adsc.200505160

SONG, X., & SAYARI, A. (1996). Sulfated Zirconia-Based Strong Solid-Acid Catalysts: Recent Progress. Catalysis Reviews, 38(3), 329-412. doi:10.1080/01614949608006462

Corma, A. (1997). Solid acid catalysts. Current Opinion in Solid State and Materials Science, 2(1), 63-75. doi:10.1016/s1359-0286(97)80107-6

Johnson, O. (1955). Acidity and Polymerization Activity of Solid Acid Catalysts. The Journal of Physical Chemistry, 59(9), 827-831. doi:10.1021/j150531a007

Weitkamp, J. (2000). Zeolites and catalysis. Solid State Ionics, 131(1-2), 175-188. doi:10.1016/s0167-2738(00)00632-9

Tanabe, K. (1999). Industrial application of solid acid–base catalysts. Applied Catalysis A: General, 181(2), 399-434. doi:10.1016/s0926-860x(98)00397-4

Hattori, H. (2001). Solid base catalysts: generation of basic sites and application to organic synthesis. Applied Catalysis A: General, 222(1-2), 247-259. doi:10.1016/s0926-860x(01)00839-0

Ono, Y. (1997). Selective reactions over solid base catalysts. Catalysis Today, 38(3), 321-337. doi:10.1016/s0920-5861(97)81502-5

Saugar, A. I., Márquez-Álvarez, C., Villar-Garcia, I. J., Welton, T., & Pérez-Pariente, J. (2016). Basicity and catalytic activity of porous materials based on a (Si,Al)-N framework. Applied Catalysis A: General, 520, 157-169. doi:10.1016/j.apcata.2016.04.012

Ma, W., Zhang, X., Fan, J., Liu, Y., Tang, W., Xue, D., … Wang, C. (2019). Iron-Catalyzed Anti-Markovnikov Hydroamination and Hydroamidation of Allylic Alcohols. Journal of the American Chemical Society, 141(34), 13506-13515. doi:10.1021/jacs.9b05221

Yang, S., Peng, L., Sun, D. T., Asgari, M., Oveisi, E., Trukhina, O., … Queen, W. L. (2019). A new post-synthetic polymerization strategy makes metal–organic frameworks more stable. Chemical Science, 10(17), 4542-4549. doi:10.1039/c9sc00135b

Das, S., Goswami, A., Murali, N., & Asefa, T. (2013). Efficient Tertiary Amine/Weak Acid Bifunctional Mesoporous Silica Catalysts for Michael Addition Reactions. ChemCatChem, 5(4), 910-919. doi:10.1002/cctc.201200551

Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11), 7413-7421. doi:10.1103/physrevb.59.7413

Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g

Dhakshinamoorthy, A., Esteve Adell, I., Primo, A., & Garcia, H. (2017). Enhanced Activity of Ag Nanoplatelets on Few Layers of Graphene Film with Preferential Orientation for Dehydrogenative Silane–Alcohol Coupling. ACS Sustainable Chemistry & Engineering, 5(3), 2400-2406. doi:10.1021/acssuschemeng.6b02729

Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & García, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033

Simion, A., Candu, N., Coman, S. M., Primo, A., Esteve-Adell, I., Michelet, V., … Garcia, H. (2018). Bimetallic Oriented (Au /Cu2 O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2 O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry, 2018(44), 6185-6190. doi:10.1002/ejoc.201801443

Wan Ngah, W. S., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4), 1446-1456. doi:10.1016/j.carbpol.2010.11.004

Onsosyen, E., & Skaugrud, O. (2007). Metal recovery using chitosan. Journal of Chemical Technology & Biotechnology, 49(4), 395-404. doi:10.1002/jctb.280490410

Puech, P., Plewa, J.-M., Mallet-Ladeira, P., & Monthioux, M. (2016). Spatial confinement model applied to phonons in disordered graphene-based carbons. Carbon, 105, 275-281. doi:10.1016/j.carbon.2016.04.048

Dervishi, E., Ji, Z., Htoon, H., Sykora, M., & Doorn, S. K. (2019). Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale, 11(35), 16571-16581. doi:10.1039/c9nr05345j

Tamor, M. A., & Vassell, W. C. (1994). Raman ‘‘fingerprinting’’ of amorphous carbon films. Journal of Applied Physics, 76(6), 3823-3830. doi:10.1063/1.357385

Zhang, H., Sun, K., Feng, Z., Ying, P., & Li, C. (2006). Studies on the SbOx species of SbOx/SiO2 catalysts for methane-selective oxidation to formaldehyde. Applied Catalysis A: General, 305(1), 110-119. doi:10.1016/j.apcata.2006.02.038

Wan, F., Guo, J.-Z., Zhang, X.-H., Zhang, J.-P., Sun, H.-Z., Yan, Q., … Wu, X.-L. (2016). In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 8(12), 7790-7799. doi:10.1021/acsami.5b12242

Primo, A., Franconetti, A., Magureanu, M., Mandache, N. B., Bucur, C., Rizescu, C., … Garcia, H. (2018). Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry, 20(11), 2611-2623. doi:10.1039/c7gc03397d

Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., & Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9(5), 1752-1758. doi:10.1021/nl803279t

Cincotto, F. H., Canevari, T. C., Machado, S. A. S., Sánchez, A., Barrio, M. A. R., Villalonga, R., & Pingarrón, J. M. (2015). Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochimica Acta, 174, 332-339. doi:10.1016/j.electacta.2015.06.013

Kumar, C. R., Anand, N., Kloekhorst, A., Cannilla, C., Bonura, G., Frusteri, F., … Heeres, H. J. (2015). Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chemistry, 17(11), 4921-4930. doi:10.1039/c5gc01641j

José Velasco, M., Rubio, F., Rubio, J., & Oteo, J. L. (1999). DSC and FT-IR analysis of the drying process of titanium alkoxide derived precipitates. Thermochimica Acta, 326(1-2), 91-97. doi:10.1016/s0040-6031(98)00580-2

Kaiser, B., Bernhardt, T. M., Kinne, M., Rademann, K., & Heidenreich, A. (1999). Formation, stability, and structures of antimony oxide cluster ions. The Journal of Chemical Physics, 110(3), 1437-1449. doi:10.1063/1.478019

Aljama, H., Nørskov, J. K., & Abild-Pedersen, F. (2017). Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides. The Journal of Physical Chemistry C, 121(30), 16440-16446. doi:10.1021/acs.jpcc.7b05838

Latimer, A. A., Aljama, H., Kakekhani, A., Yoo, J. S., Kulkarni, A., Tsai, C., … Nørskov, J. K. (2017). Mechanistic insights into heterogeneous methane activation. Physical Chemistry Chemical Physics, 19(5), 3575-3581. doi:10.1039/c6cp08003k




This item appears in the following Collection(s)

Show full item record