- -

Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Simion, Andrada es_ES
dc.contributor.author Candu, Natalia es_ES
dc.contributor.author COJOCARU, BOGDAN es_ES
dc.contributor.author Coman, Simona M. es_ES
dc.contributor.author Bucur, C. es_ES
dc.contributor.author Forneli Rubio, Mª Amparo es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.contributor.author Man, Isabela Costinela es_ES
dc.contributor.author PARVULESCU, VASILE I. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-06-01T03:31:43Z
dc.date.available 2021-06-01T03:31:43Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 0021-9517 es_ES
dc.identifier.uri http://hdl.handle.net/10251/166998
dc.description.abstract [EN] Films of few-layers defective N-doped or undoped graphene (10-15 nm) containing antimony oxide nanoparticles (15-30 nm) have been prepared on quartz by pyrolysis of alginate or chitosan adsorbing Sb(OAc)(3). XPS shows that the prevalent Sb oxidation state is +III, while thermoprogrammed CO2 desorption shows that these films exhibit basic sites. These thin films have used as basic catalysts to promote the Michael addition of active methylene compounds and the Henry condensation. These results have been rationalized by DFT calculations that have shown that undercoordinated or two-fold coordinated oxygen atoms on SbOx clusters can act as basic sites, providing a wide range of basic strength. (c) 2020 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship This work was supported by UEFISCDI (PN-III-P4-ID-PCE-2016-0146, nr. 121/2017 and project number PN-III-P1-1.1-TE-2016-2191, nr. 89/2018) and by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-890237-CO2-1). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation MINECO/RTI2018-890237-CO2-R1 es_ES
dc.relation.ispartof Journal of Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Antinomy oxide nanoparticles as base es_ES
dc.subject Graphene as support es_ES
dc.subject Michael addition catalyst es_ES
dc.subject Henry condensation catalyst es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jcat.2020.07.033 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-III-P4-ID-PCE-2016-0146 121%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-III-P1-1.1-TE-2016-2191 89%2F2018/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Simion, A.; Candu, N.; Cojocaru, B.; Coman, SM.; Bucur, C.; Forneli Rubio, MA.; Primo Arnau, AM.... (2020). Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions. Journal of Catalysis. 390:135-149. https://doi.org/10.1016/j.jcat.2020.07.033 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jcat.2020.07.033 es_ES
dc.description.upvformatpinicio 135 es_ES
dc.description.upvformatpfin 149 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 390 es_ES
dc.relation.pasarela S\433462 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005 es_ES
dc.description.references Blanita, G., & Lazar, M. D. (2013). Review of Graphene-Supported Metal Nanoparticles as New and Efficient Heterogeneous Catalysts. Micro and Nanosystems, 5(2), 138-146. doi:10.2174/1876402911305020009 es_ES
dc.description.references Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924. doi:10.1002/adma.201001068 es_ES
dc.description.references Huang, C., Li, C., & Shi, G. (2012). Graphene based catalysts. Energy & Environmental Science, 5(10), 8848. doi:10.1039/c2ee22238h es_ES
dc.description.references Joshi, R. K., Alwarappan, S., Yoshimura, M., Sahajwalla, V., & Nishina, Y. (2015). Graphene oxide: the new membrane material. Applied Materials Today, 1(1), 1-12. doi:10.1016/j.apmt.2015.06.002 es_ES
dc.description.references Miculescu, M., Thakur, V. K., Miculescu, F., & Voicu, S. I. (2016). Graphene-based polymer nanocomposite membranes: a review. Polymers for Advanced Technologies, 27(7), 844-859. doi:10.1002/pat.3751 es_ES
dc.description.references Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197 es_ES
dc.description.references Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 es_ES
dc.description.references Hao, P., Zhao, Z., Leng, Y., Tian, J., Sang, Y., Boughton, R. I., … Yang, B. (2015). Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy, 15, 9-23. doi:10.1016/j.nanoen.2015.02.035 es_ES
dc.description.references Rizescu, C., Podolean, I., Albero, J., Parvulescu, V. I., Coman, S. M., Bucur, C., … Garcia, H. (2017). N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chemistry, 19(8), 1999-2005. doi:10.1039/c7gc00473g es_ES
dc.description.references Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 es_ES
dc.description.references Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 es_ES
dc.description.references Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561 es_ES
dc.description.references Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908 es_ES
dc.description.references Zhang, S., Yan, Z., Li, Y., Chen, Z., & Zeng, H. (2015). Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions. Angewandte Chemie International Edition, 54(10), 3112-3115. doi:10.1002/anie.201411246 es_ES
dc.description.references Ji, J., Song, X., Liu, J., Yan, Z., Huo, C., Zhang, S., … Zeng, H. (2016). Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nature Communications, 7(1). doi:10.1038/ncomms13352 es_ES
dc.description.references Gibaja, C., Rodriguez-San-Miguel, D., Ares, P., Gómez-Herrero, J., Varela, M., Gillen, R., … Zamora, F. (2016). Few-Layer Antimonene by Liquid-Phase Exfoliation. Angewandte Chemie International Edition, 55(46), 14345-14349. doi:10.1002/anie.201605298 es_ES
dc.description.references Pumera, M., & Sofer, Z. (2017). 2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Advanced Materials, 29(21), 1605299. doi:10.1002/adma.201605299 es_ES
dc.description.references Li, Q., Liu, M., Zhang, Y., & Liu, Z. (2015). Hexagonal Boron Nitride-Graphene Heterostructures: Synthesis and Interfacial Properties. Small, 12(1), 32-50. doi:10.1002/smll.201501766 es_ES
dc.description.references Tang, S., Wang, H., Zhang, Y., Li, A., Xie, H., Liu, X., … Jiang, M. (2013). Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Scientific Reports, 3(1). doi:10.1038/srep02666 es_ES
dc.description.references Rendón-Patiño, A., Doménech, A., García, H., & Primo, A. (2019). A reliable procedure for the preparation of graphene-boron nitride superlattices as large area (cm × cm) films on arbitrary substrates or powders (gram scale) and unexpected electrocatalytic properties. Nanoscale, 11(6), 2981-2990. doi:10.1039/c8nr08377k es_ES
dc.description.references Elliott, B. ., Mackay, J. ., Clay, P., & Ashby, J. (1998). An assessment of the genetic toxicology of antimony trioxide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 415(1-2), 109-117. doi:10.1016/s1383-5718(98)00065-5 es_ES
dc.description.references McCallum, R. I. (2005). Occupational exposure to antimony compounds. Journal of Environmental Monitoring, 7(12), 1245. doi:10.1039/b509118g es_ES
dc.description.references Ge, Y. Z., Han, C. H., & Zhang, D. (2011). Study of PET Depolymerization Catalyzed by Metal Oxide with Different Acidity/Basicity under Microwave Irradiation. Advanced Materials Research, 233-235, 1076-1079. doi:10.4028/www.scientific.net/amr.233-235.1076 es_ES
dc.description.references Gopiraman, M., Deng, D., Ganesh Babu, S., Hayashi, T., Karvembu, R., & Kim, I. S. (2015). Sustainable and Versatile CuO/GNS Nanocatalyst for Highly Efficient Base Free Coupling Reactions. ACS Sustainable Chemistry & Engineering, 3(10), 2478-2488. doi:10.1021/acssuschemeng.5b00542 es_ES
dc.description.references Cirujano, F. G., López-Maya, E., Rodríguez-Albelo, M., Barea, E., Navarro, J. A. R., & De Vos, D. E. (2017). Selective One-Pot Two-Step C−C Bond Formation using Metal-Organic Frameworks with Mild Basicity as Heterogeneous Catalysts. ChemCatChem, 9(21), 4019-4023. doi:10.1002/cctc.201700784 es_ES
dc.description.references Miguélez, J., Miyamura, H., & Kobayashi, S. (2017). A Polystyrene‐Supported Phase‐Transfer Catalyst for Asymmetric Michael Addition of Glycine‐Derived Imines to α,β‐Unsaturated Ketones. Advanced Synthesis & Catalysis, 359(17), 2897-2900. doi:10.1002/adsc.201700155 es_ES
dc.description.references Szőllősi, G., & Kozma, V. (2018). Design of Heterogeneous Organocatalyst for the Asymmetric Michael Addition of Aldehydes to Maleimides. ChemCatChem, 10(19), 4362-4368. doi:10.1002/cctc.201800919 es_ES
dc.description.references Szőllősi, G., Gombkötő, D., Mogyorós, A. Z., & Fülöp, F. (2018). Surface-Improved Asymmetric Michael Addition Catalyzed by Amino Acids Adsorbed on Laponite. Advanced Synthesis & Catalysis, 360(10), 1992-2004. doi:10.1002/adsc.201701627 es_ES
dc.description.references Zhang, J., Han, X., Wu, X., Liu, Y., & Cui, Y. (2019). Chiral DHIP- and Pyrrolidine-Based Covalent Organic Frameworks for Asymmetric Catalysis. ACS Sustainable Chemistry & Engineering, 7(5), 5065-5071. doi:10.1021/acssuschemeng.8b05887 es_ES
dc.description.references Xie, G., Zhang, J., & Ma, X. (2019). Compartmentalization of Multiple Catalysts into Outer and Inner Shells of Hollow Mesoporous Nanospheres for Heterogeneous Multi-Catalyzed/Multi-Component Asymmetric Organocascade. ACS Catalysis, 9(10), 9081-9086. doi:10.1021/acscatal.9b01608 es_ES
dc.description.references Tahir, N., Wang, G., Onyshchenko, I., De Geyter, N., Leus, K., Morent, R., & Van Der Voort, P. (2019). High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction. Journal of Catalysis, 375, 242-248. doi:10.1016/j.jcat.2019.06.001 es_ES
dc.description.references Paul, A., Martins, L. M. D. R. S., Karmakar, A., Kuznetsov, M. L., Novikov, A. S., Guedes da Silva, M. F. C., & Pombeiro, A. J. L. (2020). Environmentally benign benzyl alcohol oxidation and C-C coupling catalysed by amide functionalized 3D Co(II) and Zn(II) metal organic frameworks. Journal of Catalysis, 385, 324-337. doi:10.1016/j.jcat.2020.03.035 es_ES
dc.description.references Zhou, T.-Y., Auer, B., Lee, S. J., & Telfer, S. G. (2019). Catalysts Confined in Programmed Framework Pores Enable New Transformations and Tune Reaction Efficiency and Selectivity. Journal of the American Chemical Society, 141(4), 1577-1582. doi:10.1021/jacs.8b11221 es_ES
dc.description.references Kannappan, L., & Rajmohan, R. (2020). Synthesis of structurally enhanced magnetite cored poly(propyleneimine) dendrimer nanohybrid material and evaluation of its functionality in sustainable catalysis of condensation reactions. Reactive and Functional Polymers, 152, 104579. doi:10.1016/j.reactfunctpolym.2020.104579 es_ES
dc.description.references Zabeti, M., Wan Daud, W. M. A., & Aroua, M. K. (2009). Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology, 90(6), 770-777. doi:10.1016/j.fuproc.2009.03.010 es_ES
dc.description.references Okuhara, T. (2002). Water-Tolerant Solid Acid Catalysts. Chemical Reviews, 102(10), 3641-3666. doi:10.1021/cr0103569 es_ES
dc.description.references Kiss, A. A., Dimian, A. C., & Rothenberg, G. (2006). Solid Acid Catalysts for Biodiesel Production –-Towards Sustainable Energy. Advanced Synthesis & Catalysis, 348(1-2), 75-81. doi:10.1002/adsc.200505160 es_ES
dc.description.references SONG, X., & SAYARI, A. (1996). Sulfated Zirconia-Based Strong Solid-Acid Catalysts: Recent Progress. Catalysis Reviews, 38(3), 329-412. doi:10.1080/01614949608006462 es_ES
dc.description.references Corma, A. (1997). Solid acid catalysts. Current Opinion in Solid State and Materials Science, 2(1), 63-75. doi:10.1016/s1359-0286(97)80107-6 es_ES
dc.description.references Johnson, O. (1955). Acidity and Polymerization Activity of Solid Acid Catalysts. The Journal of Physical Chemistry, 59(9), 827-831. doi:10.1021/j150531a007 es_ES
dc.description.references Weitkamp, J. (2000). Zeolites and catalysis. Solid State Ionics, 131(1-2), 175-188. doi:10.1016/s0167-2738(00)00632-9 es_ES
dc.description.references Tanabe, K. (1999). Industrial application of solid acid–base catalysts. Applied Catalysis A: General, 181(2), 399-434. doi:10.1016/s0926-860x(98)00397-4 es_ES
dc.description.references Hattori, H. (2001). Solid base catalysts: generation of basic sites and application to organic synthesis. Applied Catalysis A: General, 222(1-2), 247-259. doi:10.1016/s0926-860x(01)00839-0 es_ES
dc.description.references Ono, Y. (1997). Selective reactions over solid base catalysts. Catalysis Today, 38(3), 321-337. doi:10.1016/s0920-5861(97)81502-5 es_ES
dc.description.references Saugar, A. I., Márquez-Álvarez, C., Villar-Garcia, I. J., Welton, T., & Pérez-Pariente, J. (2016). Basicity and catalytic activity of porous materials based on a (Si,Al)-N framework. Applied Catalysis A: General, 520, 157-169. doi:10.1016/j.apcata.2016.04.012 es_ES
dc.description.references Ma, W., Zhang, X., Fan, J., Liu, Y., Tang, W., Xue, D., … Wang, C. (2019). Iron-Catalyzed Anti-Markovnikov Hydroamination and Hydroamidation of Allylic Alcohols. Journal of the American Chemical Society, 141(34), 13506-13515. doi:10.1021/jacs.9b05221 es_ES
dc.description.references Yang, S., Peng, L., Sun, D. T., Asgari, M., Oveisi, E., Trukhina, O., … Queen, W. L. (2019). A new post-synthetic polymerization strategy makes metal–organic frameworks more stable. Chemical Science, 10(17), 4542-4549. doi:10.1039/c9sc00135b es_ES
dc.description.references Das, S., Goswami, A., Murali, N., & Asefa, T. (2013). Efficient Tertiary Amine/Weak Acid Bifunctional Mesoporous Silica Catalysts for Michael Addition Reactions. ChemCatChem, 5(4), 910-919. doi:10.1002/cctc.201200551 es_ES
dc.description.references Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11), 7413-7421. doi:10.1103/physrevb.59.7413 es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278 es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Dhakshinamoorthy, A., Esteve Adell, I., Primo, A., & Garcia, H. (2017). Enhanced Activity of Ag Nanoplatelets on Few Layers of Graphene Film with Preferential Orientation for Dehydrogenative Silane–Alcohol Coupling. ACS Sustainable Chemistry & Engineering, 5(3), 2400-2406. doi:10.1021/acssuschemeng.6b02729 es_ES
dc.description.references Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & García, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033 es_ES
dc.description.references Simion, A., Candu, N., Coman, S. M., Primo, A., Esteve-Adell, I., Michelet, V., … Garcia, H. (2018). Bimetallic Oriented (Au /Cu2 O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu2 O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry, 2018(44), 6185-6190. doi:10.1002/ejoc.201801443 es_ES
dc.description.references Wan Ngah, W. S., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4), 1446-1456. doi:10.1016/j.carbpol.2010.11.004 es_ES
dc.description.references Onsosyen, E., & Skaugrud, O. (2007). Metal recovery using chitosan. Journal of Chemical Technology & Biotechnology, 49(4), 395-404. doi:10.1002/jctb.280490410 es_ES
dc.description.references Puech, P., Plewa, J.-M., Mallet-Ladeira, P., & Monthioux, M. (2016). Spatial confinement model applied to phonons in disordered graphene-based carbons. Carbon, 105, 275-281. doi:10.1016/j.carbon.2016.04.048 es_ES
dc.description.references Dervishi, E., Ji, Z., Htoon, H., Sykora, M., & Doorn, S. K. (2019). Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale, 11(35), 16571-16581. doi:10.1039/c9nr05345j es_ES
dc.description.references Tamor, M. A., & Vassell, W. C. (1994). Raman ‘‘fingerprinting’’ of amorphous carbon films. Journal of Applied Physics, 76(6), 3823-3830. doi:10.1063/1.357385 es_ES
dc.description.references Zhang, H., Sun, K., Feng, Z., Ying, P., & Li, C. (2006). Studies on the SbOx species of SbOx/SiO2 catalysts for methane-selective oxidation to formaldehyde. Applied Catalysis A: General, 305(1), 110-119. doi:10.1016/j.apcata.2006.02.038 es_ES
dc.description.references Wan, F., Guo, J.-Z., Zhang, X.-H., Zhang, J.-P., Sun, H.-Z., Yan, Q., … Wu, X.-L. (2016). In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 8(12), 7790-7799. doi:10.1021/acsami.5b12242 es_ES
dc.description.references Primo, A., Franconetti, A., Magureanu, M., Mandache, N. B., Bucur, C., Rizescu, C., … Garcia, H. (2018). Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry, 20(11), 2611-2623. doi:10.1039/c7gc03397d es_ES
dc.description.references Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., & Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9(5), 1752-1758. doi:10.1021/nl803279t es_ES
dc.description.references Cincotto, F. H., Canevari, T. C., Machado, S. A. S., Sánchez, A., Barrio, M. A. R., Villalonga, R., & Pingarrón, J. M. (2015). Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochimica Acta, 174, 332-339. doi:10.1016/j.electacta.2015.06.013 es_ES
dc.description.references Kumar, C. R., Anand, N., Kloekhorst, A., Cannilla, C., Bonura, G., Frusteri, F., … Heeres, H. J. (2015). Solvent free depolymerization of Kraft lignin to alkyl-phenolics using supported NiMo and CoMo catalysts. Green Chemistry, 17(11), 4921-4930. doi:10.1039/c5gc01641j es_ES
dc.description.references José Velasco, M., Rubio, F., Rubio, J., & Oteo, J. L. (1999). DSC and FT-IR analysis of the drying process of titanium alkoxide derived precipitates. Thermochimica Acta, 326(1-2), 91-97. doi:10.1016/s0040-6031(98)00580-2 es_ES
dc.description.references Kaiser, B., Bernhardt, T. M., Kinne, M., Rademann, K., & Heidenreich, A. (1999). Formation, stability, and structures of antimony oxide cluster ions. The Journal of Chemical Physics, 110(3), 1437-1449. doi:10.1063/1.478019 es_ES
dc.description.references Aljama, H., Nørskov, J. K., & Abild-Pedersen, F. (2017). Theoretical Insights into Methane C–H Bond Activation on Alkaline Metal Oxides. The Journal of Physical Chemistry C, 121(30), 16440-16446. doi:10.1021/acs.jpcc.7b05838 es_ES
dc.description.references Latimer, A. A., Aljama, H., Kakekhani, A., Yoo, J. S., Kulkarni, A., Tsai, C., … Nørskov, J. K. (2017). Mechanistic insights into heterogeneous methane activation. Physical Chemistry Chemical Physics, 19(5), 3575-3581. doi:10.1039/c6cp08003k es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem