- -

Adaptation to Water and Salt Stresses of Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adaptation to Water and Salt Stresses of Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme

Mostrar el registro completo del ítem

Martínez-Cuenca, M.; Pereira-Días, L.; Soler Aleixandre, S.; López-Serrano, L.; Alonso-Martín, D.; Calatayud, Á.; Díez, MJ. (2020). Adaptation to Water and Salt Stresses of Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme. Agronomy. 10(8):1-19. https://doi.org/10.3390/agronomy10081169

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167001

Ficheros en el ítem

Metadatos del ítem

Título: Adaptation to Water and Salt Stresses of Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme
Autor: Martínez-Cuenca, Mary-Rus Pereira-Días, Leandro Soler Aleixandre, Salvador López-Serrano, Lidia Alonso-Martín, David Calatayud, Ángeles Díez, María José
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Solanum pimpinellifoliumandSolanum lycopersicumvar.cerasiformerepresent a valuable tool for tomato breeding, particularly for tolerance to abiotic stresses. Water stress and salinity are major constraints to tomato's ...[+]
Palabras clave: Abiotic stress , Gas exchange , Phenotyping , Tomato wild relatives , Salinity , Soil Plant Analysis Development (SPAD) chlorophyll measurement , Water deficit
Derechos de uso: Reconocimiento (by)
Fuente:
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy10081169
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/agronomy10081169
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/
info:eu-repo/grantAgreement/MINECO//AGL2015-71011-R/ES/NUEVA VARIABILIDAD EN SOLANUM PIMPINELLIFOLIUM Y S. LYCOPERSICUM VAR. CERASIFORME PARA LA MEJORA DE CARACTERES AGRONOMICOS Y RESISTENCIA A ESTRESES EN TOMATE/
info:eu-repo/grantAgreement/UPV//PAID-01-16/
info:eu-repo/grantAgreement/EC/H2020/774244/EU/Breeding for Resilient, Efficient and Sustainable Organic Vegetable production/
Agradecimientos:
This research was funded by the Spanish Ministerio de Economia y Competitividad and the Fondo Europeo de Desarrollo Regional/European Regional Development Fund, grant number AGL2015-71011-R. Authors also thank the G2P-SOL ...[+]
Tipo: Artículo

References

Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11(1), 163. doi:10.1186/1471-2229-11-163

Niu, G., Rodriguez, D. S., Crosby, K., Leskovar, D., & Jifon, J. (2010). Rapid Screening for Relative Salt Tolerance among Chile Pepper Genotypes. HortScience, 45(8), 1192-1195. doi:10.21273/hortsci.45.8.1192

De Pascale, S., Ruggiero, C., Barbieri, G., & Maggio, A. (2003). Physiological Responses of Pepper to Salinity and Drought. Journal of the American Society for Horticultural Science, 128(1), 48-54. doi:10.21273/jashs.128.1.0048 [+]
Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11(1), 163. doi:10.1186/1471-2229-11-163

Niu, G., Rodriguez, D. S., Crosby, K., Leskovar, D., & Jifon, J. (2010). Rapid Screening for Relative Salt Tolerance among Chile Pepper Genotypes. HortScience, 45(8), 1192-1195. doi:10.21273/hortsci.45.8.1192

De Pascale, S., Ruggiero, C., Barbieri, G., & Maggio, A. (2003). Physiological Responses of Pepper to Salinity and Drought. Journal of the American Society for Horticultural Science, 128(1), 48-54. doi:10.21273/jashs.128.1.0048

Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911

Rao, N. K., Bhatt, R. M., & Sadashiva, A. T. (2000). Tolerance to Water Stress in Tomato Cultivars. Photosynthetica, 38(3), 465-467. doi:10.1023/a:1010902427231

Scholberg, J. M. S., & Locascio, S. J. (1999). Growth Response of Snap Bean and Tomato as Affected by Salinity and Irrigation Method. HortScience, 34(2), 259-264. doi:10.21273/hortsci.34.2.259

Singh, J., Sastry, E. V. D., & Singh, V. (2011). Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiology and Molecular Biology of Plants, 18(1), 45-50. doi:10.1007/s12298-011-0097-z

Foolad, M. R. (2004). Recent Advances in Genetics of Salt Tolerance in Tomato. Plant Cell, Tissue and Organ Culture, 76(2), 101-119. doi:10.1023/b:ticu.0000007308.47608.88

Albaladejo, I., Meco, V., Plasencia, F., Flores, F. B., Bolarin, M. C., & Egea, I. (2017). Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: From leaf anatomical adaptations to molecular responses. Environmental and Experimental Botany, 135, 1-12. doi:10.1016/j.envexpbot.2016.12.003

Egea, I., Albaladejo, I., Meco, V., Morales, B., Sevilla, A., Bolarin, M. C., & Flores, F. B. (2018). The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration. Scientific Reports, 8(1). doi:10.1038/s41598-018-21187-2

Zuriaga, E., Blanca, J. M., Cordero, L., Sifres, A., Blas-Cerdán, W. G., Morales, R., & Nuez, F. (2008). Genetic and bioclimatic variation in Solanum pimpinellifolium. Genetic Resources and Crop Evolution, 56(1), 39-51. doi:10.1007/s10722-008-9340-z

Zuriaga, E., Blanca, J., & Nuez, F. (2008). Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genetic Resources and Crop Evolution, 56(5), 663-678. doi:10.1007/s10722-008-9392-0

Rick, C. M., Fobes, J. F., & Holle, M. (1977). Genetic variation inLycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution, 127(2-3), 139-170. doi:10.1007/bf00984147

Villalta, I., Reina-Sánchez, A., Bolarín, M. C., Cuartero, J., Belver, A., Venema, K., … Asins, M. J. (2008). Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in Tomato. Theoretical and Applied Genetics, 116(6), 869-880. doi:10.1007/s00122-008-0720-8

Lin, K.-H., Yeh, W.-L., Chen, H.-M., & Lo, H.-F. (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica, 174(1), 119-135. doi:10.1007/s10681-010-0147-6

Bolarín, M. C., Fernández, F. G., Cruz, V., & Cuartero, J. (1991). Salinity Tolerance in Four Wild Tomato Species using Vegetative Yield-Salinity Response Curves. Journal of the American Society for Horticultural Science, 116(2), 286-290. doi:10.21273/jashs.116.2.286

CUARTERO, J., YEO, A. R., & FLOWERS, T. J. (1992). Selection of donors for salt-tolerance in tomato using physiological traits. New Phytologist, 121(1), 63-69. doi:10.1111/j.1469-8137.1992.tb01093.x

Foolad, M. R., Chen, F. Q., & Lin, G. Y. (1998). RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theoretical and Applied Genetics, 97(7), 1133-1144. doi:10.1007/s001220051002

Cuartero, J., & Fernández-Muñoz, R. (1998). Tomato and salinity. Scientia Horticulturae, 78(1-4), 83-125. doi:10.1016/s0304-4238(98)00191-5

Foolad, M. R. (1999). Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome, 42(4), 727-734. doi:10.1139/g98-163

Foolad, M. R., Zhang, L. P., & Lin, G. Y. (2001). Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome, 44(3), 444-454. doi:10.1139/g01-030

Bolarin, M. C., Estañ, M. T., Caro, M., Romero-Aranda, R., & Cuartero, J. (2001). Relationship between tomato fruit growth and fruit osmotic potential under salinity. Plant Science, 160(6), 1153-1159. doi:10.1016/s0168-9452(01)00360-0

Estañ, M. T., Villalta, I., Bolarín, M. C., Carbonell, E. A., & Asins, M. J. (2008). Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theoretical and Applied Genetics, 118(2), 305-312. doi:10.1007/s00122-008-0900-6

Rao, E. S., Kadirvel, P., Symonds, R. C., & Ebert, A. W. (2012). Relationship between survival and yield related traits in Solanum pimpinellifolium under salt stress. Euphytica, 190(2), 215-228. doi:10.1007/s10681-012-0801-2

Rao, E. S., Kadirvel, P., Symonds, R. C., Geethanjali, S., Thontadarya, R. N., & Ebert, A. W. (2015). Variations in DREB1A and VP1.1 Genes Show Association with Salt Tolerance Traits in Wild Tomato (Solanum pimpinellifolium). PLOS ONE, 10(7), e0132535. doi:10.1371/journal.pone.0132535

Razali, R., Bougouffa, S., Morton, M. J. L., Lightfoot, D. J., Alam, I., Essack, M., … Negrão, S. (2018). The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01402

Comparative Transcriptome Analysis of Responses to Water Deficit in Solanum lycopersicum and S. pimpinellifolium Rootshttps://omictools.com/88516daa3ab811e2cd922bd46ae0ade3-dataset

Warnock, S. J. (1991). Natural Habitats of Lycopersicon Species. HortScience, 26(5), 466-471. doi:10.21273/hortsci.26.5.466

Diouf, I. A., Derivot, L., Bitton, F., Pascual, L., & Causse, M. (2018). Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00279

Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16(1). doi:10.1186/s12864-015-1444-1

Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., & Nuez, F. (2012). Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE, 7(10), e48198. doi:10.1371/journal.pone.0048198

Datos climáticos mundialeshttps://es.climate-data.org/

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1). doi:10.1038/sdata.2018.214

Bolarín, M. C., Pérez-Alfocea, F., Cano, E. A., Estañ, M. T., & Caro, M. (1993). Growth, Fruit Yield, and Ion Concentration in Tomato Genotypes after Pre- and Post-emergence Salt Treatments. Journal of the American Society for Horticultural Science, 118(5), 655-660. doi:10.21273/jashs.118.5.655

Cantore, V., Lechkar, O., Karabulut, E., Sellami, M. H., Albrizio, R., Boari, F., … Todorovic, M. (2016). Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of «cherry» tomato (Solanum lycopersicum L.). Agricultural Water Management, 167, 53-61. doi:10.1016/j.agwat.2015.12.024

López-Serrano, L., Penella, C., San-Bautista, A., López-Galarza, S., & Calatayud, A. (2017). Physiological changes of pepper accessions in response to salinity and water stress. Spanish Journal of Agricultural Research, 15(3), e0804. doi:10.5424/sjar/2017153-11147

Chaves, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365-2384. doi:10.1093/jxb/erh269

Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and Metabolic Limitations to Photosynthesis under Drought and Salinity in C 3 Plants. Plant Biology, 6(3), 269-279. doi:10.1055/s-2004-820867

LAWLOR, D. W. (2002). Limitation to Photosynthesis in Water-stressed Leaves: Stomata vs. Metabolism and the Role of ATP. Annals of Botany, 89(7), 871-885. doi:10.1093/aob/mcf110

Flexas, J., Bota, J., Escalona, J. M., Sampol, B., & Medrano, H. (2002). Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 29(4), 461. doi:10.1071/pp01119

Nuruddin, M. M., Madramootoo, C. A., & Dodds, G. T. (2003). Effects of Water Stress at Different Growth Stages on Greenhouse Tomato Yield and Quality. HortScience, 38(7), 1389-1393. doi:10.21273/hortsci.38.7.1389

Yin, Y.-G., Kobayashi, Y., Sanuki, A., Kondo, S., Fukuda, N., Ezura, H., … Matsukura, C. (2009). Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. Journal of Experimental Botany, 61(2), 563-574. doi:10.1093/jxb/erp333

Albert, E., Segura, V., Gricourt, J., Bonnefoi, J., Derivot, L., & Causse, M. (2016). Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits. Journal of Experimental Botany, 67(22), 6413-6430. doi:10.1093/jxb/erw411

Ripoll, J., Urban, L., Brunel, B., & Bertin, N. (2016). Water deficit effects on tomato quality depend on fruit developmental stage and genotype. Journal of Plant Physiology, 190, 26-35. doi:10.1016/j.jplph.2015.10.006

Nakazato, T., Bogonovich, M., & Moyle, L. C. (2008). ENVIRONMENTAL FACTORS PREDICT ADAPTIVE PHENOTYPIC DIFFERENTIATION WITHIN AND BETWEEN TWO WILD ANDEAN TOMATOES. Evolution, 62(4), 774-792. doi:10.1111/j.1558-5646.2008.00332.x

Chaves, M. M., Flexas, J., & Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. doi:10.1093/aob/mcn125

Massaretto, I. L., Albaladejo, I., Purgatto, E., Flores, F. B., Plasencia, F., Egea-Fernández, J. M., … Egea, I. (2018). Recovering Tomato Landraces to Simultaneously Improve Fruit Yield and Nutritional Quality Against Salt Stress. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01778

Penella, C., Nebauer, S. G., Quiñones, A., San Bautista, A., López-Galarza, S., & Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science, 230, 12-22. doi:10.1016/j.plantsci.2014.10.007

Praxedes, S. C., De Lacerda, C. F., DaMatta, F. M., Prisco, J. T., & Gomes-Filho, E. (2009). Salt Tolerance is Associated with Differences in Ion Accumulation, Biomass Allocation and Photosynthesis in Cowpea Cultivars. Journal of Agronomy and Crop Science, 196(3), 193-204. doi:10.1111/j.1439-037x.2009.00412.x

Saleem, A., Ashraf, M., & Akram, N. A. (2011). Salt (NaCl)-Induced Modulation in some Key Physio-Biochemical Attributes in Okra (Abelmoschus esculentus L.). Journal of Agronomy and Crop Science, 197(3), 202-213. doi:10.1111/j.1439-037x.2010.00453.x

Sánchez-Peña, P., Oyama, K., Núñez-Farfán, J., Fornoni, J., Hernández-Verdugo, S., Márquez-Guzmán, J., & Garzón-Tiznado, J. A. (2006). Sources of Resistance to Whitefly (Bemisia spp.) in Wild Populations of Solanum lycopersicum var. Cerasiforme (Dunal) Spooner G.J. Anderson et R.K. Jansen in Northwestern Mexico. Genetic Resources and Crop Evolution, 53(4), 711-719. doi:10.1007/s10722-004-3943-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem