Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez-Cuenca, Mary-Rus | es_ES |
dc.contributor.author | Pereira-Días, Leandro | es_ES |
dc.contributor.author | Soler Aleixandre, Salvador | es_ES |
dc.contributor.author | López-Serrano, Lidia | es_ES |
dc.contributor.author | Alonso-Martín, David | es_ES |
dc.contributor.author | Calatayud, Ángeles | es_ES |
dc.contributor.author | Díez, María José | es_ES |
dc.date.accessioned | 2021-06-01T03:31:57Z | |
dc.date.available | 2021-06-01T03:31:57Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167001 | |
dc.description.abstract | [EN] Solanum pimpinellifoliumandSolanum lycopersicumvar.cerasiformerepresent a valuable tool for tomato breeding, particularly for tolerance to abiotic stresses. Water stress and salinity are major constraints to tomato's cultivation, and for which limited genetic variability has been reported within the cultivated species. We evaluated four accessions ofS. pimpinellifoliumand four ofS. l.var.cerasiformefor their adaptation to water deficit and salinity. The CO(2)assimilation rate, stomatal conductance, substomatal CO(2)concentration, transpiration rate, and leaf chlorophyll concentration were evaluated, as well as morphological and agronomic traits. The accessions showed a remarkable inter- and intra-species response variability to both stresses. TwoS. pimpinellifoliumaccessions and oneS. l.var.cerasiformeshowed unaltered physiological parameters, thus indicating a good adaptation to water deficit. TwoS. l.var.cerasiformeaccessions showed an interesting performance under salt stress, one of which showing also good adaptation to water stress. In general, both stresses showed a negative impact on leaf size and fruit fresh weight, especially in the big-sized fruits. However, flowering, fruit setting and earliness remained unaltered or even improved when compared to control conditions. Stressed plants yielded fruits with higher degrees Brix. Response to stresses seemed to be linked to origin environmental conditions, notwithstanding, variability was observed among accessions of the same region. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Ministerio de Economia y Competitividad and the Fondo Europeo de Desarrollo Regional/European Regional Development Fund, grant number AGL2015-71011-R. Authors also thank the G2P-SOL (Linking genetic resources, genomes, and phenotypes of Solanaceous crops) and BRESOV (Breeding for resilient, e fficient, and sustainable organic vegetable production) projects for support. G2P-SOL and BRESOV projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements 677379 (G2PSOL), and 774244 (BRESOV). David Alonso is grateful to Universitat Politecnica de Valencia for a predoctoral (PAID-01-16) contract under the Programa de Ayudas de Investigacion y Desarrollo. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Abiotic stress | es_ES |
dc.subject | Gas exchange | es_ES |
dc.subject | Phenotyping | es_ES |
dc.subject | Tomato wild relatives | es_ES |
dc.subject | Salinity | es_ES |
dc.subject | Soil Plant Analysis Development (SPAD) chlorophyll measurement | es_ES |
dc.subject | Water deficit | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Adaptation to Water and Salt Stresses of Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy10081169 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-71011-R/ES/NUEVA VARIABILIDAD EN SOLANUM PIMPINELLIFOLIUM Y S. LYCOPERSICUM VAR. CERASIFORME PARA LA MEJORA DE CARACTERES AGRONOMICOS Y RESISTENCIA A ESTRESES EN TOMATE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-16/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/774244/EU/Breeding for Resilient, Efficient and Sustainable Organic Vegetable production/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Martínez-Cuenca, M.; Pereira-Días, L.; Soler Aleixandre, S.; López-Serrano, L.; Alonso-Martín, D.; Calatayud, Á.; Díez, MJ. (2020). Adaptation to Water and Salt Stresses of Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme. Agronomy. 10(8):1-19. https://doi.org/10.3390/agronomy10081169 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy10081169 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\418757 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Cramer, G. R., Urano, K., Delrot, S., Pezzotti, M., & Shinozaki, K. (2011). Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 11(1), 163. doi:10.1186/1471-2229-11-163 | es_ES |
dc.description.references | Niu, G., Rodriguez, D. S., Crosby, K., Leskovar, D., & Jifon, J. (2010). Rapid Screening for Relative Salt Tolerance among Chile Pepper Genotypes. HortScience, 45(8), 1192-1195. doi:10.21273/hortsci.45.8.1192 | es_ES |
dc.description.references | De Pascale, S., Ruggiero, C., Barbieri, G., & Maggio, A. (2003). Physiological Responses of Pepper to Salinity and Drought. Journal of the American Society for Horticultural Science, 128(1), 48-54. doi:10.21273/jashs.128.1.0048 | es_ES |
dc.description.references | Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 | es_ES |
dc.description.references | Rao, N. K., Bhatt, R. M., & Sadashiva, A. T. (2000). Tolerance to Water Stress in Tomato Cultivars. Photosynthetica, 38(3), 465-467. doi:10.1023/a:1010902427231 | es_ES |
dc.description.references | Scholberg, J. M. S., & Locascio, S. J. (1999). Growth Response of Snap Bean and Tomato as Affected by Salinity and Irrigation Method. HortScience, 34(2), 259-264. doi:10.21273/hortsci.34.2.259 | es_ES |
dc.description.references | Singh, J., Sastry, E. V. D., & Singh, V. (2011). Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiology and Molecular Biology of Plants, 18(1), 45-50. doi:10.1007/s12298-011-0097-z | es_ES |
dc.description.references | Foolad, M. R. (2004). Recent Advances in Genetics of Salt Tolerance in Tomato. Plant Cell, Tissue and Organ Culture, 76(2), 101-119. doi:10.1023/b:ticu.0000007308.47608.88 | es_ES |
dc.description.references | Albaladejo, I., Meco, V., Plasencia, F., Flores, F. B., Bolarin, M. C., & Egea, I. (2017). Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: From leaf anatomical adaptations to molecular responses. Environmental and Experimental Botany, 135, 1-12. doi:10.1016/j.envexpbot.2016.12.003 | es_ES |
dc.description.references | Egea, I., Albaladejo, I., Meco, V., Morales, B., Sevilla, A., Bolarin, M. C., & Flores, F. B. (2018). The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration. Scientific Reports, 8(1). doi:10.1038/s41598-018-21187-2 | es_ES |
dc.description.references | Zuriaga, E., Blanca, J. M., Cordero, L., Sifres, A., Blas-Cerdán, W. G., Morales, R., & Nuez, F. (2008). Genetic and bioclimatic variation in Solanum pimpinellifolium. Genetic Resources and Crop Evolution, 56(1), 39-51. doi:10.1007/s10722-008-9340-z | es_ES |
dc.description.references | Zuriaga, E., Blanca, J., & Nuez, F. (2008). Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genetic Resources and Crop Evolution, 56(5), 663-678. doi:10.1007/s10722-008-9392-0 | es_ES |
dc.description.references | Rick, C. M., Fobes, J. F., & Holle, M. (1977). Genetic variation inLycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution, 127(2-3), 139-170. doi:10.1007/bf00984147 | es_ES |
dc.description.references | Villalta, I., Reina-Sánchez, A., Bolarín, M. C., Cuartero, J., Belver, A., Venema, K., … Asins, M. J. (2008). Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in Tomato. Theoretical and Applied Genetics, 116(6), 869-880. doi:10.1007/s00122-008-0720-8 | es_ES |
dc.description.references | Lin, K.-H., Yeh, W.-L., Chen, H.-M., & Lo, H.-F. (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica, 174(1), 119-135. doi:10.1007/s10681-010-0147-6 | es_ES |
dc.description.references | Bolarín, M. C., Fernández, F. G., Cruz, V., & Cuartero, J. (1991). Salinity Tolerance in Four Wild Tomato Species using Vegetative Yield-Salinity Response Curves. Journal of the American Society for Horticultural Science, 116(2), 286-290. doi:10.21273/jashs.116.2.286 | es_ES |
dc.description.references | CUARTERO, J., YEO, A. R., & FLOWERS, T. J. (1992). Selection of donors for salt-tolerance in tomato using physiological traits. New Phytologist, 121(1), 63-69. doi:10.1111/j.1469-8137.1992.tb01093.x | es_ES |
dc.description.references | Foolad, M. R., Chen, F. Q., & Lin, G. Y. (1998). RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theoretical and Applied Genetics, 97(7), 1133-1144. doi:10.1007/s001220051002 | es_ES |
dc.description.references | Cuartero, J., & Fernández-Muñoz, R. (1998). Tomato and salinity. Scientia Horticulturae, 78(1-4), 83-125. doi:10.1016/s0304-4238(98)00191-5 | es_ES |
dc.description.references | Foolad, M. R. (1999). Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome, 42(4), 727-734. doi:10.1139/g98-163 | es_ES |
dc.description.references | Foolad, M. R., Zhang, L. P., & Lin, G. Y. (2001). Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome, 44(3), 444-454. doi:10.1139/g01-030 | es_ES |
dc.description.references | Bolarin, M. C., Estañ, M. T., Caro, M., Romero-Aranda, R., & Cuartero, J. (2001). Relationship between tomato fruit growth and fruit osmotic potential under salinity. Plant Science, 160(6), 1153-1159. doi:10.1016/s0168-9452(01)00360-0 | es_ES |
dc.description.references | Estañ, M. T., Villalta, I., Bolarín, M. C., Carbonell, E. A., & Asins, M. J. (2008). Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theoretical and Applied Genetics, 118(2), 305-312. doi:10.1007/s00122-008-0900-6 | es_ES |
dc.description.references | Rao, E. S., Kadirvel, P., Symonds, R. C., & Ebert, A. W. (2012). Relationship between survival and yield related traits in Solanum pimpinellifolium under salt stress. Euphytica, 190(2), 215-228. doi:10.1007/s10681-012-0801-2 | es_ES |
dc.description.references | Rao, E. S., Kadirvel, P., Symonds, R. C., Geethanjali, S., Thontadarya, R. N., & Ebert, A. W. (2015). Variations in DREB1A and VP1.1 Genes Show Association with Salt Tolerance Traits in Wild Tomato (Solanum pimpinellifolium). PLOS ONE, 10(7), e0132535. doi:10.1371/journal.pone.0132535 | es_ES |
dc.description.references | Razali, R., Bougouffa, S., Morton, M. J. L., Lightfoot, D. J., Alam, I., Essack, M., … Negrão, S. (2018). The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01402 | es_ES |
dc.description.references | Comparative Transcriptome Analysis of Responses to Water Deficit in Solanum lycopersicum and S. pimpinellifolium Rootshttps://omictools.com/88516daa3ab811e2cd922bd46ae0ade3-dataset | es_ES |
dc.description.references | Warnock, S. J. (1991). Natural Habitats of Lycopersicon Species. HortScience, 26(5), 466-471. doi:10.21273/hortsci.26.5.466 | es_ES |
dc.description.references | Diouf, I. A., Derivot, L., Bitton, F., Pascual, L., & Causse, M. (2018). Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00279 | es_ES |
dc.description.references | Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16(1). doi:10.1186/s12864-015-1444-1 | es_ES |
dc.description.references | Blanca, J., Cañizares, J., Cordero, L., Pascual, L., Diez, M. J., & Nuez, F. (2012). Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE, 7(10), e48198. doi:10.1371/journal.pone.0048198 | es_ES |
dc.description.references | Datos climáticos mundialeshttps://es.climate-data.org/ | es_ES |
dc.description.references | Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1). doi:10.1038/sdata.2018.214 | es_ES |
dc.description.references | Bolarín, M. C., Pérez-Alfocea, F., Cano, E. A., Estañ, M. T., & Caro, M. (1993). Growth, Fruit Yield, and Ion Concentration in Tomato Genotypes after Pre- and Post-emergence Salt Treatments. Journal of the American Society for Horticultural Science, 118(5), 655-660. doi:10.21273/jashs.118.5.655 | es_ES |
dc.description.references | Cantore, V., Lechkar, O., Karabulut, E., Sellami, M. H., Albrizio, R., Boari, F., … Todorovic, M. (2016). Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of «cherry» tomato (Solanum lycopersicum L.). Agricultural Water Management, 167, 53-61. doi:10.1016/j.agwat.2015.12.024 | es_ES |
dc.description.references | López-Serrano, L., Penella, C., San-Bautista, A., López-Galarza, S., & Calatayud, A. (2017). Physiological changes of pepper accessions in response to salinity and water stress. Spanish Journal of Agricultural Research, 15(3), e0804. doi:10.5424/sjar/2017153-11147 | es_ES |
dc.description.references | Chaves, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365-2384. doi:10.1093/jxb/erh269 | es_ES |
dc.description.references | Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and Metabolic Limitations to Photosynthesis under Drought and Salinity in C 3 Plants. Plant Biology, 6(3), 269-279. doi:10.1055/s-2004-820867 | es_ES |
dc.description.references | LAWLOR, D. W. (2002). Limitation to Photosynthesis in Water-stressed Leaves: Stomata vs. Metabolism and the Role of ATP. Annals of Botany, 89(7), 871-885. doi:10.1093/aob/mcf110 | es_ES |
dc.description.references | Flexas, J., Bota, J., Escalona, J. M., Sampol, B., & Medrano, H. (2002). Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 29(4), 461. doi:10.1071/pp01119 | es_ES |
dc.description.references | Nuruddin, M. M., Madramootoo, C. A., & Dodds, G. T. (2003). Effects of Water Stress at Different Growth Stages on Greenhouse Tomato Yield and Quality. HortScience, 38(7), 1389-1393. doi:10.21273/hortsci.38.7.1389 | es_ES |
dc.description.references | Yin, Y.-G., Kobayashi, Y., Sanuki, A., Kondo, S., Fukuda, N., Ezura, H., … Matsukura, C. (2009). Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. Journal of Experimental Botany, 61(2), 563-574. doi:10.1093/jxb/erp333 | es_ES |
dc.description.references | Albert, E., Segura, V., Gricourt, J., Bonnefoi, J., Derivot, L., & Causse, M. (2016). Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits. Journal of Experimental Botany, 67(22), 6413-6430. doi:10.1093/jxb/erw411 | es_ES |
dc.description.references | Ripoll, J., Urban, L., Brunel, B., & Bertin, N. (2016). Water deficit effects on tomato quality depend on fruit developmental stage and genotype. Journal of Plant Physiology, 190, 26-35. doi:10.1016/j.jplph.2015.10.006 | es_ES |
dc.description.references | Nakazato, T., Bogonovich, M., & Moyle, L. C. (2008). ENVIRONMENTAL FACTORS PREDICT ADAPTIVE PHENOTYPIC DIFFERENTIATION WITHIN AND BETWEEN TWO WILD ANDEAN TOMATOES. Evolution, 62(4), 774-792. doi:10.1111/j.1558-5646.2008.00332.x | es_ES |
dc.description.references | Chaves, M. M., Flexas, J., & Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. doi:10.1093/aob/mcn125 | es_ES |
dc.description.references | Massaretto, I. L., Albaladejo, I., Purgatto, E., Flores, F. B., Plasencia, F., Egea-Fernández, J. M., … Egea, I. (2018). Recovering Tomato Landraces to Simultaneously Improve Fruit Yield and Nutritional Quality Against Salt Stress. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01778 | es_ES |
dc.description.references | Penella, C., Nebauer, S. G., Quiñones, A., San Bautista, A., López-Galarza, S., & Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science, 230, 12-22. doi:10.1016/j.plantsci.2014.10.007 | es_ES |
dc.description.references | Praxedes, S. C., De Lacerda, C. F., DaMatta, F. M., Prisco, J. T., & Gomes-Filho, E. (2009). Salt Tolerance is Associated with Differences in Ion Accumulation, Biomass Allocation and Photosynthesis in Cowpea Cultivars. Journal of Agronomy and Crop Science, 196(3), 193-204. doi:10.1111/j.1439-037x.2009.00412.x | es_ES |
dc.description.references | Saleem, A., Ashraf, M., & Akram, N. A. (2011). Salt (NaCl)-Induced Modulation in some Key Physio-Biochemical Attributes in Okra (Abelmoschus esculentus L.). Journal of Agronomy and Crop Science, 197(3), 202-213. doi:10.1111/j.1439-037x.2010.00453.x | es_ES |
dc.description.references | Sánchez-Peña, P., Oyama, K., Núñez-Farfán, J., Fornoni, J., Hernández-Verdugo, S., Márquez-Guzmán, J., & Garzón-Tiznado, J. A. (2006). Sources of Resistance to Whitefly (Bemisia spp.) in Wild Populations of Solanum lycopersicum var. Cerasiforme (Dunal) Spooner G.J. Anderson et R.K. Jansen in Northwestern Mexico. Genetic Resources and Crop Evolution, 53(4), 711-719. doi:10.1007/s10722-004-3943-9 | es_ES |