- -

Main root adaptations in Pepper germplasm (Capsicum spp.) to phosphorus low-input conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Main root adaptations in Pepper germplasm (Capsicum spp.) to phosphorus low-input conditions

Mostrar el registro completo del ítem

Pereira-Días, L.; Gil-Villar, D.; Castell-Zeising, V.; Quiñones, A.; Calatayud, Á.; Rodríguez Burruezo, A.; Fita, A. (2020). Main root adaptations in Pepper germplasm (Capsicum spp.) to phosphorus low-input conditions. Agronomy. 10(5):1-20. https://doi.org/10.3390/agronomy10050637

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167002

Ficheros en el ítem

Metadatos del ítem

Título: Main root adaptations in Pepper germplasm (Capsicum spp.) to phosphorus low-input conditions
Autor: Pereira-Días, Leandro Gil-Villar, Daniel Castell-Zeising, Vicente Quiñones, Ana Calatayud, Ángeles Rodríguez Burruezo, Adrián Fita, Ana
Entidad UPV: Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Agriculture will face many challenges regarding food security and sustainability. Improving phosphorus use efficiency is of paramount importance to face the needs of a growing population while decreasing the toll on ...[+]
Palabras clave: Capsicum annuum , Root structure , Root hairs , Phosphorus use efficiency , P-starvation , Abiotic stress , Macrominerals , Nutrient , Breeding
Derechos de uso: Reconocimiento (by)
Fuente:
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy10050637
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/agronomy10050637
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTA2013-00022-C02-02/ES/Obtención de patrones de pimiento tolerantes a bajos insumos de fósforo y genética de la adaptación radicular a estreses abióticos/
Agradecimientos:
This research was funded by FEDER-Funds and INIA, grant number RTA2013-00022-C02-02. The APC was self-funded.
Tipo: Artículo

References

Jaggard, K. W., Qi, A., & Ober, E. S. (2010). Possible changes to arable crop yields by 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2835-2851. doi:10.1098/rstb.2010.0153

Grafton, R. Q., Daugbjerg, C., & Qureshi, M. E. (2015). Towards food security by 2050. Food Security, 7(2), 179-183. doi:10.1007/s12571-015-0445-x

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677. doi:10.1038/nature01014 [+]
Jaggard, K. W., Qi, A., & Ober, E. S. (2010). Possible changes to arable crop yields by 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2835-2851. doi:10.1098/rstb.2010.0153

Grafton, R. Q., Daugbjerg, C., & Qureshi, M. E. (2015). Towards food security by 2050. Food Security, 7(2), 179-183. doi:10.1007/s12571-015-0445-x

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677. doi:10.1038/nature01014

Tsiafouli, M. A., Thébault, E., Sgardelis, S. P., de Ruiter, P. C., van der Putten, W. H., Birkhofer, K., … Hedlund, K. (2014). Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 21(2), 973-985. doi:10.1111/gcb.12752

Raza, A., Razzaq, A., Mehmood, S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants, 8(2), 34. doi:10.3390/plants8020034

Vance, C. P., Uhde‐Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157(3), 423-447. doi:10.1046/j.1469-8137.2003.00695.x

Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292-305. doi:10.1016/j.gloenvcha.2008.10.009

Mogollón, J. M., Beusen, A. H. W., van Grinsven, H. J. ., Westhoek, H., & Bouwman, A. F. (2018). Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change, 50, 149-163. doi:10.1016/j.gloenvcha.2018.03.007

Lynch, J. P. (2007). Roots of the Second Green Revolution. Australian Journal of Botany, 55(5), 493. doi:10.1071/bt06118

Fernandez, M. C., & Rubio, G. (2015). Root morphological traits related to phosphorus-uptake efficiency of soybean, sunflower, and maize. Journal of Plant Nutrition and Soil Science, 178(5), 807-815. doi:10.1002/jpln.201500155

Fita, A., Bowen, H. C., Hayden, R. M., Nuez, F., Picó, B., & Hammond, J. P. (2012). Diversity in Expression of Phosphorus (P) Responsive Genes in Cucumis melo L. PLoS ONE, 7(4), e35387. doi:10.1371/journal.pone.0035387

Li, J., Xie, Y., Dai, A., Liu, L., & Li, Z. (2009). Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. Journal of Genetics and Genomics, 36(3), 173-183. doi:10.1016/s1673-8527(08)60104-6

Hammond, J. P., Broadley, M. R., White, P. J., King, G. J., Bowen, H. C., Hayden, R., … Greenwood, D. J. (2009). Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. Journal of Experimental Botany, 60(7), 1953-1968. doi:10.1093/jxb/erp083

Lynch, J. P., & Brown, K. M. (2001). Plant and Soil, 237(2), 225-237. doi:10.1023/a:1013324727040

Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., & Zhang, Y. S. (2012). Responses of root architecture development to low phosphorus availability: a review. Annals of Botany, 112(2), 391-408. doi:10.1093/aob/mcs285

Fita, A., Nuez, F., & Picó, B. (2011). Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L. Euphytica, 181(3), 323-339. doi:10.1007/s10681-011-0432-z

Fan, M., Zhu, J., Richards, C., Brown, K. M., & Lynch, J. P. (2003). Physiological roles for aerenchyma in phosphorus-stressed roots. Functional Plant Biology, 30(5), 493. doi:10.1071/fp03046

Richardson, A. E., Lynch, J. P., Ryan, P. R., Delhaize, E., Smith, F. A., Smith, S. E., … Simpson, R. J. (2011). Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil, 349(1-2), 121-156. doi:10.1007/s11104-011-0950-4

Van de Wiel, C. C. M., van der Linden, C. G., & Scholten, O. E. (2015). Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica, 207(1), 1-22. doi:10.1007/s10681-015-1572-3

Sahitya, U. L., Krishna, M. S. R., & Suneetha, P. (2019). Integrated approaches to study the drought tolerance mechanism in hot pepper (Capsicum annuum L.). Physiology and Molecular Biology of Plants, 25(3), 637-647. doi:10.1007/s12298-019-00655-7

Hwang, E.-W., Kim, K.-A., Park, S.-C., Jeong, M.-J., Byun, M.-O., & Kwon, H.-B. (2005). Expression profiles of hot pepper (capsicum annuum) genes under cold stress conditions. Journal of Biosciences, 30(5), 657-667. doi:10.1007/bf02703566

Jing, H., Li, C., Ma, F., Ma, J.-H., Khan, A., Wang, X., … Chen, R.-G. (2016). Genome-Wide Identification, Expression Diversication of Dehydrin Gene Family and Characterization of CaDHN3 in Pepper (Capsicum annuum L.). PLOS ONE, 11(8), e0161073. doi:10.1371/journal.pone.0161073

Pereira-Dias, L., Vilanova, S., Fita, A., Prohens, J., & Rodríguez-Burruezo, A. (2019). Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Horticulture Research, 6(1). doi:10.1038/s41438-019-0132-8

Fita, A., Picó, B., Roig, C., & Nuez, F. (2007). Performance ofCucumis melossp.agrestisas a rootstock for melon. The Journal of Horticultural Science and Biotechnology, 82(2), 184-190. doi:10.1080/14620316.2007.11512218

Bouain, N., Shahzad, Z., Rouached, A., Khan, G. A., Berthomieu, P., Abdelly, C., … Rouached, H. (2014). Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. Journal of Experimental Botany, 65(20), 5725-5741. doi:10.1093/jxb/eru314

Ham, B.-K., Chen, J., Yan, Y., & Lucas, W. J. (2018). Insights into plant phosphate sensing and signaling. Current Opinion in Biotechnology, 49, 1-9. doi:10.1016/j.copbio.2017.07.005

Rose, T. J., Pariasca-Tanaka, J., Rose, M. T., Fukuta, Y., & Wissuwa, M. (2010). Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crops Research, 119(1), 154-160. doi:10.1016/j.fcr.2010.07.004

Bryant, R. J., Dorsch, J. A., Peterson, K. L., Rutger, J. N., & Raboy, V. (2005). Phosphorus and Mineral Concentrations in Whole Grain and Milled Low Phytic Acid (lpa) 1-1 Rice. Cereal Chemistry Journal, 82(5), 517-522. doi:10.1094/cc-82-0517

Akhtar, M. S., Oki, Y., & Adachi, T. (2008). Genetic Variability in Phosphorus Acquisition and Utilization Efficiency from Sparingly Soluble P-Sources byBrassicaCultivars under P-Stress Environment. Journal of Agronomy and Crop Science, 194(5), 380-392. doi:10.1111/j.1439-037x.2008.00326.x

Hu, Y., Ye, X., Shi, L., Duan, H., & Xu, F. (2010). GENOTYPIC DIFFERENCES IN ROOT MORPHOLOGY AND PHOSPHORUS UPTAKE KINETICS INBRASSICA NAPUSUNDER LOW PHOSPHORUS SUPPLY. Journal of Plant Nutrition, 33(6), 889-901. doi:10.1080/01904161003658239

Bates, T. R., & Lynch, J. P. (2001). Plant and Soil, 236(2), 243-250. doi:10.1023/a:1012791706800

Strock, C. F., Morrow de la Riva, L., & Lynch, J. P. (2017). Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition. Plant Physiology, 176(1), 691-703. doi:10.1104/pp.17.01583

López-Bucio, J., Cruz-Ramı́rez, A., & Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6(3), 280-287. doi:10.1016/s1369-5266(03)00035-9

Miguel, M. A., Postma, J. A., & Lynch, J. P. (2015). Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition. Plant Physiology, 167(4), 1430-1439. doi:10.1104/pp.15.00145

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem