- -

Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue

Mostrar el registro completo del ítem

Moreno Peris, E.; Cortés Olmos, C.; Díez-Díaz, M.; González-Más, MC.; De Luis-Margarit, A.; Fita, A.; Rodríguez Burruezo, A. (2020). Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue. Agronomy. 10(5):1-23. https://doi.org/10.3390/agronomy10050751

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167005

Ficheros en el ítem

Metadatos del ítem

Título: Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue
Autor: Moreno Peris, Estela Cortés Olmos, Carles Díez-Díaz, Mónica González-Más, M. Carmen de Luis-Margarit, Ana Fita, Ana Rodríguez Burruezo, Adrián
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Capsicumpeppers (Capsicumspp.), especiallyC. annuumL., are one of the most important vegetables and spices in the world and their fruits are used in a range of food dishes, to provide aroma and flavor. Pungency has ...[+]
Palabras clave: Aroma , Flavor , Capsicumpeppers , GC-MS , HS-SPME , Combining ability , Inheritance models , Fruit quality , Hybridization
Derechos de uso: Reconocimiento (by)
Fuente:
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy10050751
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/agronomy10050751
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTA2014-00041-C02-02/ES/Selección y mejora de variedades tradicionales de pimiento (Capsicum annuum L.) para rendimiento y calidad de fruto y adaptadas a cultivo ecológico/
Agradecimientos:
This work has been funded by INIA project RTA2014-00041-C02-02, FEDER Funds.
Tipo: Artículo

References

Garcés-Claver, A., Arnedo-Andrés, M. S., Abadía, J., Gil-Ortega, R., & Álvarez-Fernández, A. (2006). Determination of Capsaicin and Dihydrocapsaicin in Capsicum Fruits by Liquid Chromatography−Electrospray/Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 54(25), 9303-9311. doi:10.1021/jf0620261

López Castilla, L. del C., Garruña Hernández, R., Castillo Aguilar, C. de la C., Martínez-Hernández, A., Ortiz-García, M. M., & Andueza-Noh, R. H. (2019). Structure and Genetic Diversity of Nine Important Landraces of Capsicum Species Cultivated in the Yucatan Peninsula, Mexico. Agronomy, 9(7), 376. doi:10.3390/agronomy9070376

Pereira-Dias, L., Vilanova, S., Fita, A., Prohens, J., & Rodríguez-Burruezo, A. (2019). Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Horticulture Research, 6(1). doi:10.1038/s41438-019-0132-8 [+]
Garcés-Claver, A., Arnedo-Andrés, M. S., Abadía, J., Gil-Ortega, R., & Álvarez-Fernández, A. (2006). Determination of Capsaicin and Dihydrocapsaicin in Capsicum Fruits by Liquid Chromatography−Electrospray/Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 54(25), 9303-9311. doi:10.1021/jf0620261

López Castilla, L. del C., Garruña Hernández, R., Castillo Aguilar, C. de la C., Martínez-Hernández, A., Ortiz-García, M. M., & Andueza-Noh, R. H. (2019). Structure and Genetic Diversity of Nine Important Landraces of Capsicum Species Cultivated in the Yucatan Peninsula, Mexico. Agronomy, 9(7), 376. doi:10.3390/agronomy9070376

Pereira-Dias, L., Vilanova, S., Fita, A., Prohens, J., & Rodríguez-Burruezo, A. (2019). Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Horticulture Research, 6(1). doi:10.1038/s41438-019-0132-8

Patel, K., Ruiz, C., Calderon, R., Marcelo, M., & Rojas, R. (2016). Characterisation of volatile profiles in 50 native Peruvian chili pepper using solid phase microextraction–gas chromatography mass spectrometry (SPME–GCMS). Food Research International, 89, 471-475. doi:10.1016/j.foodres.2016.08.023

Ribes-Moya, A. M., Raigón, M. D., Moreno-Peris, E., Fita, A., & Rodríguez-Burruezo, A. (2018). Response to organic cultivation of heirloom Capsicum peppers: Variation in the level of bioactive compounds and effect of ripening. PLOS ONE, 13(11), e0207888. doi:10.1371/journal.pone.0207888

PINO, J., GONZALEZ, M., CEBALLOS, L., CENTURIONYAH, A., TRUJILLOAGUIRRE, J., LATOURNERIEMORENO, L., & SAURIDUCH, E. (2007). Characterization of total capsaicinoids, colour and volatile compounds of Habanero chilli pepper (Capsicum chinense Jack.) cultivars grown in Yucatan. Food Chemistry, 104(4), 1682-1686. doi:10.1016/j.foodchem.2006.12.067

Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S., & Fernando, N. (2010). HS-SPME Comparative Analysis of Genotypic Diversity in the Volatile Fraction and Aroma-Contributing Compounds of Capsicum Fruits from the annuum−chinense−frutescens Complex. Journal of Agricultural and Food Chemistry, 58(7), 4388-4400. doi:10.1021/jf903931t

Bogusz Junior, S., Tavares, A. M., Filho, J. T., Zini, C. A., & Godoy, H. T. (2012). Analysis of the volatile compounds of Brazilian chilli peppers (Capsicum spp.) at two stages of maturity by solid phase micro-extraction and gas chromatography-mass spectrometry. Food Research International, 48(1), 98-107. doi:10.1016/j.foodres.2012.02.005

Morales-Soriano, E., Kebede, B., Ugás, R., Grauwet, T., Van Loey, A., & Hendrickx, M. (2018). Flavor characterization of native Peruvian chili peppers through integrated aroma fingerprinting and pungency profiling. Food Research International, 109, 250-259. doi:10.1016/j.foodres.2018.04.030

Olguín-Rojas, J., Fayos, O., Vázquez-León, L., Ferreiro-González, M., Rodríguez-Jimenes, G., Palma, M., … Barbero, G. (2019). Progression of the Total and Individual Capsaicinoids Content in the Fruits of Three Different Cultivars of Capsicum chinense Jacq. Agronomy, 9(3), 141. doi:10.3390/agronomy9030141

Baby, K. C., & Ranganathan, T. V. (2016). Effect of enzyme pretreatment on yield and quality of fresh green chilli ( Capsicum annuum L) oleoresin and its major capsaicinoids. Biocatalysis and Agricultural Biotechnology, 7, 95-101. doi:10.1016/j.bcab.2016.05.010

Barchenger, D. W., & Bosland, P. W. (2016). Exogenous applications of capsaicin inhibits seed germination of Capsicum annuum. Scientia Horticulturae, 203, 29-31. doi:10.1016/j.scienta.2016.03.009

Scoville, W. L. (1912). Note on Capsicums. The Journal of the American Pharmaceutical Association (1912), 1(5), 453-454. doi:10.1002/jps.3080010520

Estrada, B., Pomar, F., Dı́az, J., Merino, F., & Bernal, M. . (1999). Pungency level in fruits of the Padrón pepper with different water supply. Scientia Horticulturae, 81(4), 385-396. doi:10.1016/s0304-4238(99)00029-1

Jarret, R. L., Perkins, B., Fan, T., Prince, A., Guthrie, K., & Skoczenski, B. (2003). Using EIA to screen Capsicum spp. germplasm for capsaicinoid content. Journal of Food Composition and Analysis, 16(2), 189-194. doi:10.1016/s0889-1575(02)00161-8

Wahyuni, Y., Ballester, A.-R., Sudarmonowati, E., Bino, R. J., & Bovy, A. G. (2013). Secondary Metabolites of Capsicum Species and Their Importance in the Human Diet. Journal of Natural Products, 76(4), 783-793. doi:10.1021/np300898z

Lu, M., Ho, C.-T., & Huang, Q. (2017). Extraction, bioavailability, and bioefficacy of capsaicinoids. Journal of Food and Drug Analysis, 25(1), 27-36. doi:10.1016/j.jfda.2016.10.023

Kollmannsberger, H., Rodríguez-Burruezo, A., Nitz, S., & Nuez, F. (2011). Volatile and capsaicinoid composition of ají (Capsicum baccatum) and rocoto (Capsicum pubescens), two Andean species of chile peppers. Journal of the Science of Food and Agriculture, 91(9), 1598-1611. doi:10.1002/jsfa.4354

Eggink, P. M., Tikunov, Y., Maliepaard, C., Haanstra, J. P. W., de Rooij, H., Vogelaar, A., … Visser, R. G. F. (2013). Capturing flavors from Capsicum baccatum by introgression in sweet pepper. Theoretical and Applied Genetics, 127(2), 373-390. doi:10.1007/s00122-013-2225-3

Luning, P. A., de Rijk, T., Wichers, H. J., & Roozen, J. P. (1994). Gas Chromatography, Mass Spectrometry, and Sniffing Port Analyses of Volatile Compounds of Fresh Bell Peppers (Capsicum annuum) at Different Ripening Stages. Journal of Agricultural and Food Chemistry, 42(4), 977-983. doi:10.1021/jf00040a027

Cremer, D. R., & Eichner, K. (2000). Formation of Volatile Compounds during Heating of Spice Paprika (Capsicum annuum) Powder. Journal of Agricultural and Food Chemistry, 48(6), 2454-2460. doi:10.1021/jf991375a

Hammer, K., Arrowsmith, N., & Gladis, T. (2003). Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften, 90(6), 241-250. doi:10.1007/s00114-003-0433-4

Brugarolas, M., Martínez-Carrasco, L., Martínez-Poveda, A., & Ruiz-Martínez, J. J. (2009). A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Spanish Journal of Agricultural Research, 7(2), 294. doi:10.5424/sjar/2009072-420

Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2005). Leaf Volatile Compounds of Six Citrus Somatic Allotetraploid Hybrids Originating from Various Combinations of Lime, Lemon, Citron, Sweet Orange, and Grapefruit. Journal of Agricultural and Food Chemistry, 53(6), 2224-2230. doi:10.1021/jf048315b

Rodríguez-Burruezo, A., Kollmannsberger, H., Prohens, J., Nitz, S., & Nuez, F. (2004). Analysis of the Volatile Aroma Constituents of Parental and Hybrid Clones of Pepino (Solanum muricatum). Journal of Agricultural and Food Chemistry, 52(18), 5663-5669. doi:10.1021/jf040107w

Antonio, A. S., Wiedemann, L. S. M., & Veiga Junior, V. F. (2018). The genusCapsicum: a phytochemical review of bioactive secondary metabolites. RSC Advances, 8(45), 25767-25784. doi:10.1039/c8ra02067a

Zimmermann, M., & Schieberle, P. (2000). Important odorants of sweet bell pepper powder ( Capsicum annuum cv. annuum): differences between samples of Hungarian and Morrocan origin. European Food Research and Technology, 211(3), 175-180. doi:10.1007/s002170050019

Simian, H., Robert, F., & Blank, I. (2003). Identification and Synthesis of 2-Heptanethiol, a New Flavor Compound Found in Bell Peppers. Journal of Agricultural and Food Chemistry, 52(2), 306-310. doi:10.1021/jf035008h

Sosa-Moguel, O., Pino, J. A., Ayora-Talavera, G., Sauri-Duch, E., & Cuevas-Glory, L. (2017). Biological activities of volatile extracts from two varieties of Habanero pepper (Capsicum chinense Jacq.). International Journal of Food Properties, 20(sup3), S3042-S3051. doi:10.1080/10942912.2017.1397694

Bianchi, G., & Lo Scalzo, R. (2018). Characterization of hot pepper spice phytochemicals, taste compounds content and volatile profiles in relation to the drying temperature. Journal of Food Biochemistry, 42(6), e12675. doi:10.1111/jfbc.12675

Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001

Gomez, E., Ledbetter, C. A., & Hartsell, P. L. (1993). Volatile compounds in apricot, plum, and their interspecific hybrids. Journal of Agricultural and Food Chemistry, 41(10), 1669-1676. doi:10.1021/jf00034a029

Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2003). Leaf Volatile Compounds of Seven Citrus Somatic Tetraploid Hybrids Sharing Willow Leaf Mandarin (Citrus deliciosa Ten.) as Their Common Parent. Journal of Agricultural and Food Chemistry, 51(20), 6006-6013. doi:10.1021/jf0345090

Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468

Cuevas-Glory, L. F., Sosa-Moguel, O., Pino, J., & Sauri-Duch, E. (2014). GC–MS Characterization of Volatile Compounds in Habanero Pepper (Capsicum chinense Jacq.) by Optimization of Headspace Solid-Phase Microextraction Conditions. Food Analytical Methods, 8(4), 1005-1013. doi:10.1007/s12161-014-9980-x

Orzaez, D., & Granell, A. (2009). Reverse genetics and transient gene expression in fleshy fruits. Plant Signaling & Behavior, 4(9), 864-867. doi:10.4161/psb.4.9.9422

Pinheiro, T. T., Peres, L. E. P., Purgatto, E., Latado, R. R., Maniero, R. A., Martins, M. M., & Figueira, A. (2019). Citrus carotenoid isomerase gene characterization by complementation of the «Micro-Tom» tangerine mutant. Plant Cell Reports, 38(5), 623-636. doi:10.1007/s00299-019-02393-2

Rothan, C., Diouf, I., & Causse, M. (2018). Trait discovery and editing in tomato. The Plant Journal, 97(1), 73-90. doi:10.1111/tpj.14152

Goulet, B. E., Roda, F., & Hopkins, R. (2016). Hybridization in Plants: Old Ideas, New Techniques. Plant Physiology, 173(1), 65-78. doi:10.1104/pp.16.01340

Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., & Granell, A. (2013). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613-4623. doi:10.1093/jxb/eru128

Aubert, C., & Milhet, C. (2007). Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. Batsch). Food Chemistry, 102(1), 375-384. doi:10.1016/j.foodchem.2006.05.030

Moing, A., Aharoni, A., Biais, B., Rogachev, I., Meir, S., Brodsky, L., … Hall, R. D. (2011). Extensive metabolic cross‐talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 190(3), 683-696. doi:10.1111/j.1469-8137.2010.03626.x

Wang, L., Qian, C., Bai, J., Luo, W., Jin, C., & Yu, Z. (2017). Difference in volatile composition between the pericarp tissue and inner tissue of tomato (Solanum lycopersicum) fruit. Journal of Food Processing and Preservation, 42(1), e13387. doi:10.1111/jfpp.13387

Dardick, C., & Callahan, A. M. (2014). Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00284

Bosland, P. W., Coon, D., & Cooke, P. H. (2015). Novel Formation of Ectopic (Nonplacental) Capsaicinoid Secreting Vesicles on Fruit Walls Explains the Morphological Mechanism for Super-hot Chile Peppers. Journal of the American Society for Horticultural Science, 140(3), 253-256. doi:10.21273/jashs.140.3.253

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem