Mostrar el registro sencillo del ítem
dc.contributor.author | Moreno Peris, Estela | es_ES |
dc.contributor.author | Cortés Olmos, Carles | es_ES |
dc.contributor.author | Díez-Díaz, Mónica | es_ES |
dc.contributor.author | González-Más, M. Carmen | es_ES |
dc.contributor.author | de Luis-Margarit, Ana | es_ES |
dc.contributor.author | Fita, Ana | es_ES |
dc.contributor.author | Rodríguez Burruezo, Adrián | es_ES |
dc.date.accessioned | 2021-06-01T03:32:10Z | |
dc.date.available | 2021-06-01T03:32:10Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167005 | |
dc.description.abstract | [EN] Capsicumpeppers (Capsicumspp.), especiallyC. annuumL., are one of the most important vegetables and spices in the world and their fruits are used in a range of food dishes, to provide aroma and flavor. Pungency has been largely studied, while studies on the volatile fraction are more recent and less diverse. A considerable varietal diversity among peppers has been reported in terms of the aroma quality and the qualitative and quantitative variation in the volatile fraction, particularly in fully ripe fruits, which encompass most diverse food applications and aroma profiles. Thus, a study was designed to study the inheritance of the volatile fractions in peppers and to determine if they can be improved by breeding strategies. The volatile fraction of 175 samples of ripe fruits from a diverse collection of peppers, encompassing a range of varietal types and aroma qualities, were isolated by headspace-solid-phase microextraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). A diverse profile of volatiles including terpenoids, esters, alkanes, and several aldehydes and alcohols, was found among the evaluated accessions. Our findings indicated that, in most cases, hybridization provided higher amounts of total volatiles and a more complex composition, particularly in the pericarp. In addition, the volatile fraction can be inherited from the parents to the offspring, as most individual volatiles in hybrids, especially major volatiles, were present in at least one of the parents, following intermediate (levels between parents) or transgressive (levels higher than the best parent) inheritance. De novo compounds (present in the hybrid, absent in the parents) were found in many samples. Comparatively, placental tissues had higher total and individual volatile levels compared with the pericarp in most parent accessions and hybrids, which must be considered by breeders if this part of the fruit is included in food formulations. By combining parent lines with complementary volatile fractions, hybridization offers a feasible method to improve the volatile composition of ripe fruits in Capsicum peppers. | es_ES |
dc.description.sponsorship | This work has been funded by INIA project RTA2014-00041-C02-02, FEDER Funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Aroma | es_ES |
dc.subject | Flavor | es_ES |
dc.subject | Capsicumpeppers | es_ES |
dc.subject | GC-MS | es_ES |
dc.subject | HS-SPME | es_ES |
dc.subject | Combining ability | es_ES |
dc.subject | Inheritance models | es_ES |
dc.subject | Fruit quality | es_ES |
dc.subject | Hybridization | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy10050751 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2014-00041-C02-02/ES/Selección y mejora de variedades tradicionales de pimiento (Capsicum annuum L.) para rendimiento y calidad de fruto y adaptadas a cultivo ecológico/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Moreno Peris, E.; Cortés Olmos, C.; Díez-Díaz, M.; González-Más, MC.; De Luis-Margarit, A.; Fita, A.; Rodríguez Burruezo, A. (2020). Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue. Agronomy. 10(5):1-23. https://doi.org/10.3390/agronomy10050751 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy10050751 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\412749 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Garcés-Claver, A., Arnedo-Andrés, M. S., Abadía, J., Gil-Ortega, R., & Álvarez-Fernández, A. (2006). Determination of Capsaicin and Dihydrocapsaicin in Capsicum Fruits by Liquid Chromatography−Electrospray/Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 54(25), 9303-9311. doi:10.1021/jf0620261 | es_ES |
dc.description.references | López Castilla, L. del C., Garruña Hernández, R., Castillo Aguilar, C. de la C., Martínez-Hernández, A., Ortiz-García, M. M., & Andueza-Noh, R. H. (2019). Structure and Genetic Diversity of Nine Important Landraces of Capsicum Species Cultivated in the Yucatan Peninsula, Mexico. Agronomy, 9(7), 376. doi:10.3390/agronomy9070376 | es_ES |
dc.description.references | Pereira-Dias, L., Vilanova, S., Fita, A., Prohens, J., & Rodríguez-Burruezo, A. (2019). Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Horticulture Research, 6(1). doi:10.1038/s41438-019-0132-8 | es_ES |
dc.description.references | Patel, K., Ruiz, C., Calderon, R., Marcelo, M., & Rojas, R. (2016). Characterisation of volatile profiles in 50 native Peruvian chili pepper using solid phase microextraction–gas chromatography mass spectrometry (SPME–GCMS). Food Research International, 89, 471-475. doi:10.1016/j.foodres.2016.08.023 | es_ES |
dc.description.references | Ribes-Moya, A. M., Raigón, M. D., Moreno-Peris, E., Fita, A., & Rodríguez-Burruezo, A. (2018). Response to organic cultivation of heirloom Capsicum peppers: Variation in the level of bioactive compounds and effect of ripening. PLOS ONE, 13(11), e0207888. doi:10.1371/journal.pone.0207888 | es_ES |
dc.description.references | PINO, J., GONZALEZ, M., CEBALLOS, L., CENTURIONYAH, A., TRUJILLOAGUIRRE, J., LATOURNERIEMORENO, L., & SAURIDUCH, E. (2007). Characterization of total capsaicinoids, colour and volatile compounds of Habanero chilli pepper (Capsicum chinense Jack.) cultivars grown in Yucatan. Food Chemistry, 104(4), 1682-1686. doi:10.1016/j.foodchem.2006.12.067 | es_ES |
dc.description.references | Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S., & Fernando, N. (2010). HS-SPME Comparative Analysis of Genotypic Diversity in the Volatile Fraction and Aroma-Contributing Compounds of Capsicum Fruits from the annuum−chinense−frutescens Complex. Journal of Agricultural and Food Chemistry, 58(7), 4388-4400. doi:10.1021/jf903931t | es_ES |
dc.description.references | Bogusz Junior, S., Tavares, A. M., Filho, J. T., Zini, C. A., & Godoy, H. T. (2012). Analysis of the volatile compounds of Brazilian chilli peppers (Capsicum spp.) at two stages of maturity by solid phase micro-extraction and gas chromatography-mass spectrometry. Food Research International, 48(1), 98-107. doi:10.1016/j.foodres.2012.02.005 | es_ES |
dc.description.references | Morales-Soriano, E., Kebede, B., Ugás, R., Grauwet, T., Van Loey, A., & Hendrickx, M. (2018). Flavor characterization of native Peruvian chili peppers through integrated aroma fingerprinting and pungency profiling. Food Research International, 109, 250-259. doi:10.1016/j.foodres.2018.04.030 | es_ES |
dc.description.references | Olguín-Rojas, J., Fayos, O., Vázquez-León, L., Ferreiro-González, M., Rodríguez-Jimenes, G., Palma, M., … Barbero, G. (2019). Progression of the Total and Individual Capsaicinoids Content in the Fruits of Three Different Cultivars of Capsicum chinense Jacq. Agronomy, 9(3), 141. doi:10.3390/agronomy9030141 | es_ES |
dc.description.references | Baby, K. C., & Ranganathan, T. V. (2016). Effect of enzyme pretreatment on yield and quality of fresh green chilli ( Capsicum annuum L) oleoresin and its major capsaicinoids. Biocatalysis and Agricultural Biotechnology, 7, 95-101. doi:10.1016/j.bcab.2016.05.010 | es_ES |
dc.description.references | Barchenger, D. W., & Bosland, P. W. (2016). Exogenous applications of capsaicin inhibits seed germination of Capsicum annuum. Scientia Horticulturae, 203, 29-31. doi:10.1016/j.scienta.2016.03.009 | es_ES |
dc.description.references | Scoville, W. L. (1912). Note on Capsicums. The Journal of the American Pharmaceutical Association (1912), 1(5), 453-454. doi:10.1002/jps.3080010520 | es_ES |
dc.description.references | Estrada, B., Pomar, F., Dı́az, J., Merino, F., & Bernal, M. . (1999). Pungency level in fruits of the Padrón pepper with different water supply. Scientia Horticulturae, 81(4), 385-396. doi:10.1016/s0304-4238(99)00029-1 | es_ES |
dc.description.references | Jarret, R. L., Perkins, B., Fan, T., Prince, A., Guthrie, K., & Skoczenski, B. (2003). Using EIA to screen Capsicum spp. germplasm for capsaicinoid content. Journal of Food Composition and Analysis, 16(2), 189-194. doi:10.1016/s0889-1575(02)00161-8 | es_ES |
dc.description.references | Wahyuni, Y., Ballester, A.-R., Sudarmonowati, E., Bino, R. J., & Bovy, A. G. (2013). Secondary Metabolites of Capsicum Species and Their Importance in the Human Diet. Journal of Natural Products, 76(4), 783-793. doi:10.1021/np300898z | es_ES |
dc.description.references | Lu, M., Ho, C.-T., & Huang, Q. (2017). Extraction, bioavailability, and bioefficacy of capsaicinoids. Journal of Food and Drug Analysis, 25(1), 27-36. doi:10.1016/j.jfda.2016.10.023 | es_ES |
dc.description.references | Kollmannsberger, H., Rodríguez-Burruezo, A., Nitz, S., & Nuez, F. (2011). Volatile and capsaicinoid composition of ají (Capsicum baccatum) and rocoto (Capsicum pubescens), two Andean species of chile peppers. Journal of the Science of Food and Agriculture, 91(9), 1598-1611. doi:10.1002/jsfa.4354 | es_ES |
dc.description.references | Eggink, P. M., Tikunov, Y., Maliepaard, C., Haanstra, J. P. W., de Rooij, H., Vogelaar, A., … Visser, R. G. F. (2013). Capturing flavors from Capsicum baccatum by introgression in sweet pepper. Theoretical and Applied Genetics, 127(2), 373-390. doi:10.1007/s00122-013-2225-3 | es_ES |
dc.description.references | Luning, P. A., de Rijk, T., Wichers, H. J., & Roozen, J. P. (1994). Gas Chromatography, Mass Spectrometry, and Sniffing Port Analyses of Volatile Compounds of Fresh Bell Peppers (Capsicum annuum) at Different Ripening Stages. Journal of Agricultural and Food Chemistry, 42(4), 977-983. doi:10.1021/jf00040a027 | es_ES |
dc.description.references | Cremer, D. R., & Eichner, K. (2000). Formation of Volatile Compounds during Heating of Spice Paprika (Capsicum annuum) Powder. Journal of Agricultural and Food Chemistry, 48(6), 2454-2460. doi:10.1021/jf991375a | es_ES |
dc.description.references | Hammer, K., Arrowsmith, N., & Gladis, T. (2003). Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften, 90(6), 241-250. doi:10.1007/s00114-003-0433-4 | es_ES |
dc.description.references | Brugarolas, M., Martínez-Carrasco, L., Martínez-Poveda, A., & Ruiz-Martínez, J. J. (2009). A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Spanish Journal of Agricultural Research, 7(2), 294. doi:10.5424/sjar/2009072-420 | es_ES |
dc.description.references | Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2005). Leaf Volatile Compounds of Six Citrus Somatic Allotetraploid Hybrids Originating from Various Combinations of Lime, Lemon, Citron, Sweet Orange, and Grapefruit. Journal of Agricultural and Food Chemistry, 53(6), 2224-2230. doi:10.1021/jf048315b | es_ES |
dc.description.references | Rodríguez-Burruezo, A., Kollmannsberger, H., Prohens, J., Nitz, S., & Nuez, F. (2004). Analysis of the Volatile Aroma Constituents of Parental and Hybrid Clones of Pepino (Solanum muricatum). Journal of Agricultural and Food Chemistry, 52(18), 5663-5669. doi:10.1021/jf040107w | es_ES |
dc.description.references | Antonio, A. S., Wiedemann, L. S. M., & Veiga Junior, V. F. (2018). The genusCapsicum: a phytochemical review of bioactive secondary metabolites. RSC Advances, 8(45), 25767-25784. doi:10.1039/c8ra02067a | es_ES |
dc.description.references | Zimmermann, M., & Schieberle, P. (2000). Important odorants of sweet bell pepper powder ( Capsicum annuum cv. annuum): differences between samples of Hungarian and Morrocan origin. European Food Research and Technology, 211(3), 175-180. doi:10.1007/s002170050019 | es_ES |
dc.description.references | Simian, H., Robert, F., & Blank, I. (2003). Identification and Synthesis of 2-Heptanethiol, a New Flavor Compound Found in Bell Peppers. Journal of Agricultural and Food Chemistry, 52(2), 306-310. doi:10.1021/jf035008h | es_ES |
dc.description.references | Sosa-Moguel, O., Pino, J. A., Ayora-Talavera, G., Sauri-Duch, E., & Cuevas-Glory, L. (2017). Biological activities of volatile extracts from two varieties of Habanero pepper (Capsicum chinense Jacq.). International Journal of Food Properties, 20(sup3), S3042-S3051. doi:10.1080/10942912.2017.1397694 | es_ES |
dc.description.references | Bianchi, G., & Lo Scalzo, R. (2018). Characterization of hot pepper spice phytochemicals, taste compounds content and volatile profiles in relation to the drying temperature. Journal of Food Biochemistry, 42(6), e12675. doi:10.1111/jfbc.12675 | es_ES |
dc.description.references | Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001 | es_ES |
dc.description.references | Gomez, E., Ledbetter, C. A., & Hartsell, P. L. (1993). Volatile compounds in apricot, plum, and their interspecific hybrids. Journal of Agricultural and Food Chemistry, 41(10), 1669-1676. doi:10.1021/jf00034a029 | es_ES |
dc.description.references | Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2003). Leaf Volatile Compounds of Seven Citrus Somatic Tetraploid Hybrids Sharing Willow Leaf Mandarin (Citrus deliciosa Ten.) as Their Common Parent. Journal of Agricultural and Food Chemistry, 51(20), 6006-6013. doi:10.1021/jf0345090 | es_ES |
dc.description.references | Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468 | es_ES |
dc.description.references | Cuevas-Glory, L. F., Sosa-Moguel, O., Pino, J., & Sauri-Duch, E. (2014). GC–MS Characterization of Volatile Compounds in Habanero Pepper (Capsicum chinense Jacq.) by Optimization of Headspace Solid-Phase Microextraction Conditions. Food Analytical Methods, 8(4), 1005-1013. doi:10.1007/s12161-014-9980-x | es_ES |
dc.description.references | Orzaez, D., & Granell, A. (2009). Reverse genetics and transient gene expression in fleshy fruits. Plant Signaling & Behavior, 4(9), 864-867. doi:10.4161/psb.4.9.9422 | es_ES |
dc.description.references | Pinheiro, T. T., Peres, L. E. P., Purgatto, E., Latado, R. R., Maniero, R. A., Martins, M. M., & Figueira, A. (2019). Citrus carotenoid isomerase gene characterization by complementation of the «Micro-Tom» tangerine mutant. Plant Cell Reports, 38(5), 623-636. doi:10.1007/s00299-019-02393-2 | es_ES |
dc.description.references | Rothan, C., Diouf, I., & Causse, M. (2018). Trait discovery and editing in tomato. The Plant Journal, 97(1), 73-90. doi:10.1111/tpj.14152 | es_ES |
dc.description.references | Goulet, B. E., Roda, F., & Hopkins, R. (2016). Hybridization in Plants: Old Ideas, New Techniques. Plant Physiology, 173(1), 65-78. doi:10.1104/pp.16.01340 | es_ES |
dc.description.references | Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., & Granell, A. (2013). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613-4623. doi:10.1093/jxb/eru128 | es_ES |
dc.description.references | Aubert, C., & Milhet, C. (2007). Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. Batsch). Food Chemistry, 102(1), 375-384. doi:10.1016/j.foodchem.2006.05.030 | es_ES |
dc.description.references | Moing, A., Aharoni, A., Biais, B., Rogachev, I., Meir, S., Brodsky, L., … Hall, R. D. (2011). Extensive metabolic cross‐talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 190(3), 683-696. doi:10.1111/j.1469-8137.2010.03626.x | es_ES |
dc.description.references | Wang, L., Qian, C., Bai, J., Luo, W., Jin, C., & Yu, Z. (2017). Difference in volatile composition between the pericarp tissue and inner tissue of tomato (Solanum lycopersicum) fruit. Journal of Food Processing and Preservation, 42(1), e13387. doi:10.1111/jfpp.13387 | es_ES |
dc.description.references | Dardick, C., & Callahan, A. M. (2014). Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00284 | es_ES |
dc.description.references | Bosland, P. W., Coon, D., & Cooke, P. H. (2015). Novel Formation of Ectopic (Nonplacental) Capsaicinoid Secreting Vesicles on Fruit Walls Explains the Morphological Mechanism for Super-hot Chile Peppers. Journal of the American Society for Horticultural Science, 140(3), 253-256. doi:10.21273/jashs.140.3.253 | es_ES |