- -

Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno Peris, Estela es_ES
dc.contributor.author Cortés Olmos, Carles es_ES
dc.contributor.author Díez-Díaz, Mónica es_ES
dc.contributor.author González-Más, M. Carmen es_ES
dc.contributor.author de Luis-Margarit, Ana es_ES
dc.contributor.author Fita, Ana es_ES
dc.contributor.author Rodríguez Burruezo, Adrián es_ES
dc.date.accessioned 2021-06-01T03:32:10Z
dc.date.available 2021-06-01T03:32:10Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167005
dc.description.abstract [EN] Capsicumpeppers (Capsicumspp.), especiallyC. annuumL., are one of the most important vegetables and spices in the world and their fruits are used in a range of food dishes, to provide aroma and flavor. Pungency has been largely studied, while studies on the volatile fraction are more recent and less diverse. A considerable varietal diversity among peppers has been reported in terms of the aroma quality and the qualitative and quantitative variation in the volatile fraction, particularly in fully ripe fruits, which encompass most diverse food applications and aroma profiles. Thus, a study was designed to study the inheritance of the volatile fractions in peppers and to determine if they can be improved by breeding strategies. The volatile fraction of 175 samples of ripe fruits from a diverse collection of peppers, encompassing a range of varietal types and aroma qualities, were isolated by headspace-solid-phase microextraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). A diverse profile of volatiles including terpenoids, esters, alkanes, and several aldehydes and alcohols, was found among the evaluated accessions. Our findings indicated that, in most cases, hybridization provided higher amounts of total volatiles and a more complex composition, particularly in the pericarp. In addition, the volatile fraction can be inherited from the parents to the offspring, as most individual volatiles in hybrids, especially major volatiles, were present in at least one of the parents, following intermediate (levels between parents) or transgressive (levels higher than the best parent) inheritance. De novo compounds (present in the hybrid, absent in the parents) were found in many samples. Comparatively, placental tissues had higher total and individual volatile levels compared with the pericarp in most parent accessions and hybrids, which must be considered by breeders if this part of the fruit is included in food formulations. By combining parent lines with complementary volatile fractions, hybridization offers a feasible method to improve the volatile composition of ripe fruits in Capsicum peppers. es_ES
dc.description.sponsorship This work has been funded by INIA project RTA2014-00041-C02-02, FEDER Funds. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Agronomy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Aroma es_ES
dc.subject Flavor es_ES
dc.subject Capsicumpeppers es_ES
dc.subject GC-MS es_ES
dc.subject HS-SPME es_ES
dc.subject Combining ability es_ES
dc.subject Inheritance models es_ES
dc.subject Fruit quality es_ES
dc.subject Hybridization es_ES
dc.subject.classification GENETICA es_ES
dc.title Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/agronomy10050751 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2014-00041-C02-02/ES/Selección y mejora de variedades tradicionales de pimiento (Capsicum annuum L.) para rendimiento y calidad de fruto y adaptadas a cultivo ecológico/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Moreno Peris, E.; Cortés Olmos, C.; Díez-Díaz, M.; González-Más, MC.; De Luis-Margarit, A.; Fita, A.; Rodríguez Burruezo, A. (2020). Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue. Agronomy. 10(5):1-23. https://doi.org/10.3390/agronomy10050751 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/agronomy10050751 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2073-4395 es_ES
dc.relation.pasarela S\412749 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Garcés-Claver, A., Arnedo-Andrés, M. S., Abadía, J., Gil-Ortega, R., & Álvarez-Fernández, A. (2006). Determination of Capsaicin and Dihydrocapsaicin in Capsicum Fruits by Liquid Chromatography−Electrospray/Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 54(25), 9303-9311. doi:10.1021/jf0620261 es_ES
dc.description.references López Castilla, L. del C., Garruña Hernández, R., Castillo Aguilar, C. de la C., Martínez-Hernández, A., Ortiz-García, M. M., & Andueza-Noh, R. H. (2019). Structure and Genetic Diversity of Nine Important Landraces of Capsicum Species Cultivated in the Yucatan Peninsula, Mexico. Agronomy, 9(7), 376. doi:10.3390/agronomy9070376 es_ES
dc.description.references Pereira-Dias, L., Vilanova, S., Fita, A., Prohens, J., & Rodríguez-Burruezo, A. (2019). Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Horticulture Research, 6(1). doi:10.1038/s41438-019-0132-8 es_ES
dc.description.references Patel, K., Ruiz, C., Calderon, R., Marcelo, M., & Rojas, R. (2016). Characterisation of volatile profiles in 50 native Peruvian chili pepper using solid phase microextraction–gas chromatography mass spectrometry (SPME–GCMS). Food Research International, 89, 471-475. doi:10.1016/j.foodres.2016.08.023 es_ES
dc.description.references Ribes-Moya, A. M., Raigón, M. D., Moreno-Peris, E., Fita, A., & Rodríguez-Burruezo, A. (2018). Response to organic cultivation of heirloom Capsicum peppers: Variation in the level of bioactive compounds and effect of ripening. PLOS ONE, 13(11), e0207888. doi:10.1371/journal.pone.0207888 es_ES
dc.description.references PINO, J., GONZALEZ, M., CEBALLOS, L., CENTURIONYAH, A., TRUJILLOAGUIRRE, J., LATOURNERIEMORENO, L., & SAURIDUCH, E. (2007). Characterization of total capsaicinoids, colour and volatile compounds of Habanero chilli pepper (Capsicum chinense Jack.) cultivars grown in Yucatan. Food Chemistry, 104(4), 1682-1686. doi:10.1016/j.foodchem.2006.12.067 es_ES
dc.description.references Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S., & Fernando, N. (2010). HS-SPME Comparative Analysis of Genotypic Diversity in the Volatile Fraction and Aroma-Contributing Compounds of Capsicum Fruits from the annuum−chinense−frutescens Complex. Journal of Agricultural and Food Chemistry, 58(7), 4388-4400. doi:10.1021/jf903931t es_ES
dc.description.references Bogusz Junior, S., Tavares, A. M., Filho, J. T., Zini, C. A., & Godoy, H. T. (2012). Analysis of the volatile compounds of Brazilian chilli peppers (Capsicum spp.) at two stages of maturity by solid phase micro-extraction and gas chromatography-mass spectrometry. Food Research International, 48(1), 98-107. doi:10.1016/j.foodres.2012.02.005 es_ES
dc.description.references Morales-Soriano, E., Kebede, B., Ugás, R., Grauwet, T., Van Loey, A., & Hendrickx, M. (2018). Flavor characterization of native Peruvian chili peppers through integrated aroma fingerprinting and pungency profiling. Food Research International, 109, 250-259. doi:10.1016/j.foodres.2018.04.030 es_ES
dc.description.references Olguín-Rojas, J., Fayos, O., Vázquez-León, L., Ferreiro-González, M., Rodríguez-Jimenes, G., Palma, M., … Barbero, G. (2019). Progression of the Total and Individual Capsaicinoids Content in the Fruits of Three Different Cultivars of Capsicum chinense Jacq. Agronomy, 9(3), 141. doi:10.3390/agronomy9030141 es_ES
dc.description.references Baby, K. C., & Ranganathan, T. V. (2016). Effect of enzyme pretreatment on yield and quality of fresh green chilli ( Capsicum annuum L) oleoresin and its major capsaicinoids. Biocatalysis and Agricultural Biotechnology, 7, 95-101. doi:10.1016/j.bcab.2016.05.010 es_ES
dc.description.references Barchenger, D. W., & Bosland, P. W. (2016). Exogenous applications of capsaicin inhibits seed germination of Capsicum annuum. Scientia Horticulturae, 203, 29-31. doi:10.1016/j.scienta.2016.03.009 es_ES
dc.description.references Scoville, W. L. (1912). Note on Capsicums. The Journal of the American Pharmaceutical Association (1912), 1(5), 453-454. doi:10.1002/jps.3080010520 es_ES
dc.description.references Estrada, B., Pomar, F., Dı́az, J., Merino, F., & Bernal, M. . (1999). Pungency level in fruits of the Padrón pepper with different water supply. Scientia Horticulturae, 81(4), 385-396. doi:10.1016/s0304-4238(99)00029-1 es_ES
dc.description.references Jarret, R. L., Perkins, B., Fan, T., Prince, A., Guthrie, K., & Skoczenski, B. (2003). Using EIA to screen Capsicum spp. germplasm for capsaicinoid content. Journal of Food Composition and Analysis, 16(2), 189-194. doi:10.1016/s0889-1575(02)00161-8 es_ES
dc.description.references Wahyuni, Y., Ballester, A.-R., Sudarmonowati, E., Bino, R. J., & Bovy, A. G. (2013). Secondary Metabolites of Capsicum Species and Their Importance in the Human Diet. Journal of Natural Products, 76(4), 783-793. doi:10.1021/np300898z es_ES
dc.description.references Lu, M., Ho, C.-T., & Huang, Q. (2017). Extraction, bioavailability, and bioefficacy of capsaicinoids. Journal of Food and Drug Analysis, 25(1), 27-36. doi:10.1016/j.jfda.2016.10.023 es_ES
dc.description.references Kollmannsberger, H., Rodríguez-Burruezo, A., Nitz, S., & Nuez, F. (2011). Volatile and capsaicinoid composition of ají (Capsicum baccatum) and rocoto (Capsicum pubescens), two Andean species of chile peppers. Journal of the Science of Food and Agriculture, 91(9), 1598-1611. doi:10.1002/jsfa.4354 es_ES
dc.description.references Eggink, P. M., Tikunov, Y., Maliepaard, C., Haanstra, J. P. W., de Rooij, H., Vogelaar, A., … Visser, R. G. F. (2013). Capturing flavors from Capsicum baccatum by introgression in sweet pepper. Theoretical and Applied Genetics, 127(2), 373-390. doi:10.1007/s00122-013-2225-3 es_ES
dc.description.references Luning, P. A., de Rijk, T., Wichers, H. J., & Roozen, J. P. (1994). Gas Chromatography, Mass Spectrometry, and Sniffing Port Analyses of Volatile Compounds of Fresh Bell Peppers (Capsicum annuum) at Different Ripening Stages. Journal of Agricultural and Food Chemistry, 42(4), 977-983. doi:10.1021/jf00040a027 es_ES
dc.description.references Cremer, D. R., & Eichner, K. (2000). Formation of Volatile Compounds during Heating of Spice Paprika (Capsicum annuum) Powder. Journal of Agricultural and Food Chemistry, 48(6), 2454-2460. doi:10.1021/jf991375a es_ES
dc.description.references Hammer, K., Arrowsmith, N., & Gladis, T. (2003). Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften, 90(6), 241-250. doi:10.1007/s00114-003-0433-4 es_ES
dc.description.references Brugarolas, M., Martínez-Carrasco, L., Martínez-Poveda, A., & Ruiz-Martínez, J. J. (2009). A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Spanish Journal of Agricultural Research, 7(2), 294. doi:10.5424/sjar/2009072-420 es_ES
dc.description.references Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2005). Leaf Volatile Compounds of Six Citrus Somatic Allotetraploid Hybrids Originating from Various Combinations of Lime, Lemon, Citron, Sweet Orange, and Grapefruit. Journal of Agricultural and Food Chemistry, 53(6), 2224-2230. doi:10.1021/jf048315b es_ES
dc.description.references Rodríguez-Burruezo, A., Kollmannsberger, H., Prohens, J., Nitz, S., & Nuez, F. (2004). Analysis of the Volatile Aroma Constituents of Parental and Hybrid Clones of Pepino (Solanum muricatum). Journal of Agricultural and Food Chemistry, 52(18), 5663-5669. doi:10.1021/jf040107w es_ES
dc.description.references Antonio, A. S., Wiedemann, L. S. M., & Veiga Junior, V. F. (2018). The genusCapsicum: a phytochemical review of bioactive secondary metabolites. RSC Advances, 8(45), 25767-25784. doi:10.1039/c8ra02067a es_ES
dc.description.references Zimmermann, M., & Schieberle, P. (2000). Important odorants of sweet bell pepper powder ( Capsicum annuum cv. annuum): differences between samples of Hungarian and Morrocan origin. European Food Research and Technology, 211(3), 175-180. doi:10.1007/s002170050019 es_ES
dc.description.references Simian, H., Robert, F., & Blank, I. (2003). Identification and Synthesis of 2-Heptanethiol, a New Flavor Compound Found in Bell Peppers. Journal of Agricultural and Food Chemistry, 52(2), 306-310. doi:10.1021/jf035008h es_ES
dc.description.references Sosa-Moguel, O., Pino, J. A., Ayora-Talavera, G., Sauri-Duch, E., & Cuevas-Glory, L. (2017). Biological activities of volatile extracts from two varieties of Habanero pepper (Capsicum chinense Jacq.). International Journal of Food Properties, 20(sup3), S3042-S3051. doi:10.1080/10942912.2017.1397694 es_ES
dc.description.references Bianchi, G., & Lo Scalzo, R. (2018). Characterization of hot pepper spice phytochemicals, taste compounds content and volatile profiles in relation to the drying temperature. Journal of Food Biochemistry, 42(6), e12675. doi:10.1111/jfbc.12675 es_ES
dc.description.references Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001 es_ES
dc.description.references Gomez, E., Ledbetter, C. A., & Hartsell, P. L. (1993). Volatile compounds in apricot, plum, and their interspecific hybrids. Journal of Agricultural and Food Chemistry, 41(10), 1669-1676. doi:10.1021/jf00034a029 es_ES
dc.description.references Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2003). Leaf Volatile Compounds of Seven Citrus Somatic Tetraploid Hybrids Sharing Willow Leaf Mandarin (Citrus deliciosa Ten.) as Their Common Parent. Journal of Agricultural and Food Chemistry, 51(20), 6006-6013. doi:10.1021/jf0345090 es_ES
dc.description.references Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468 es_ES
dc.description.references Cuevas-Glory, L. F., Sosa-Moguel, O., Pino, J., & Sauri-Duch, E. (2014). GC–MS Characterization of Volatile Compounds in Habanero Pepper (Capsicum chinense Jacq.) by Optimization of Headspace Solid-Phase Microextraction Conditions. Food Analytical Methods, 8(4), 1005-1013. doi:10.1007/s12161-014-9980-x es_ES
dc.description.references Orzaez, D., & Granell, A. (2009). Reverse genetics and transient gene expression in fleshy fruits. Plant Signaling & Behavior, 4(9), 864-867. doi:10.4161/psb.4.9.9422 es_ES
dc.description.references Pinheiro, T. T., Peres, L. E. P., Purgatto, E., Latado, R. R., Maniero, R. A., Martins, M. M., & Figueira, A. (2019). Citrus carotenoid isomerase gene characterization by complementation of the «Micro-Tom» tangerine mutant. Plant Cell Reports, 38(5), 623-636. doi:10.1007/s00299-019-02393-2 es_ES
dc.description.references Rothan, C., Diouf, I., & Causse, M. (2018). Trait discovery and editing in tomato. The Plant Journal, 97(1), 73-90. doi:10.1111/tpj.14152 es_ES
dc.description.references Goulet, B. E., Roda, F., & Hopkins, R. (2016). Hybridization in Plants: Old Ideas, New Techniques. Plant Physiology, 173(1), 65-78. doi:10.1104/pp.16.01340 es_ES
dc.description.references Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., & Granell, A. (2013). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613-4623. doi:10.1093/jxb/eru128 es_ES
dc.description.references Aubert, C., & Milhet, C. (2007). Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. Batsch). Food Chemistry, 102(1), 375-384. doi:10.1016/j.foodchem.2006.05.030 es_ES
dc.description.references Moing, A., Aharoni, A., Biais, B., Rogachev, I., Meir, S., Brodsky, L., … Hall, R. D. (2011). Extensive metabolic cross‐talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 190(3), 683-696. doi:10.1111/j.1469-8137.2010.03626.x es_ES
dc.description.references Wang, L., Qian, C., Bai, J., Luo, W., Jin, C., & Yu, Z. (2017). Difference in volatile composition between the pericarp tissue and inner tissue of tomato (Solanum lycopersicum) fruit. Journal of Food Processing and Preservation, 42(1), e13387. doi:10.1111/jfpp.13387 es_ES
dc.description.references Dardick, C., & Callahan, A. M. (2014). Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00284 es_ES
dc.description.references Bosland, P. W., Coon, D., & Cooke, P. H. (2015). Novel Formation of Ectopic (Nonplacental) Capsaicinoid Secreting Vesicles on Fruit Walls Explains the Morphological Mechanism for Super-hot Chile Peppers. Journal of the American Society for Horticultural Science, 140(3), 253-256. doi:10.21273/jashs.140.3.253 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem