- -

Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serna-García, Marta es_ES
dc.contributor.author Peiró Barber, Rosa Mª es_ES
dc.contributor.author Serna, Eva es_ES
dc.contributor.author Santacreu Jerez, María Antonia es_ES
dc.date.accessioned 2021-06-01T03:32:18Z
dc.date.available 2021-06-01T03:32:18Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167008
dc.description.abstract [EN] Transcriptomic analysis showed nineteen potential biomarkers in ovarian tissue from females belonged to a rabbit line selected for ovulation rate for 10 generations and the control line. These females differed not only in ovulation rate but also in prenatal survival since similar litter size were observed. Litter size is an essential trait in rabbit meat production but with low heritability. A selection experiment for ovulation rate has been performed for 10 generations to improve litter size in rabbits. The selected line increased two ova more than the control line but nevertheless a negative correlation was observed with prenatal survival. A transcriptomic study was performed, using microarrays, in ovarian tissue from females belonging to the selected line and the control line. Our results showed 1357 differential expressed genes and nineteen potential biomarkers associated with prenatal mortality, which could explain differences between litter size in rabbits. Cell death was the most relevant process. es_ES
dc.description.sponsorship This research was supported by MEC (AGL2014-55921-C2-1-P) and Generalitat Valenciana (Prometeo 2009/125). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Animals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ovulation rate es_ES
dc.subject Litter size es_ES
dc.subject Transcriptomic analysis es_ES
dc.subject Rabbit es_ES
dc.subject Ovarian tissue es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.subject.classification GENETICA es_ES
dc.title Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ani10101924 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F125/ES/Efecto de la crioconservación de embriones sobre el desarrollo y el re-establecimiento de poblaciones/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Serna-García, M.; Peiró Barber, RM.; Serna, E.; Santacreu Jerez, MA. (2020). Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits. Animals. 10(10):1-11. https://doi.org/10.3390/ani10101924 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ani10101924 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2076-2615 es_ES
dc.identifier.pmid 33092110 es_ES
dc.identifier.pmcid PMC7593938 es_ES
dc.relation.pasarela S\433497 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Laborda, P., Mocé, M. L., Blasco, A., & Santacreu, M. A. (2012). Selection for ovulation rate in rabbits: Genetic parameters and correlated responses on survival rates1. Journal of Animal Science, 90(2), 439-446. doi:10.2527/jas.2011-4219 es_ES
dc.description.references Laborda, P., Mocé, M. L., Santacreu, M. A., & Blasco, A. (2011). Selection for ovulation rate in rabbits: Genetic parameters, direct response, and correlated response on litter size1. Journal of Animal Science, 89(10), 2981-2987. doi:10.2527/jas.2011-3906 es_ES
dc.description.references Laborda, P., Santacreu, M. A., Blasco, A., & Mocé, M. L. (2012). Selection for ovulation rate in rabbits: Direct and correlated responses estimated with a cryopreserved control population1. Journal of Animal Science, 90(10), 3392-3397. doi:10.2527/jas.2011-4837 es_ES
dc.description.references Cunningham, P. J., England, M. E., Young, L. D., & Zimmerman, D. R. (1979). Selection for Ovulation Rate in Swine: Correlated Response in Litter Size and Weight. Journal of Animal Science, 48(3), 509-516. doi:10.2527/jas1979.483509x es_ES
dc.description.references Rosendo, A., Druet, T., Gogué, J., & Bidanel, J. P. (2007). Direct responses to six generations of selection for ovulation rate or prenatal survival in Large White pigs. Journal of Animal Science, 85(2), 356-364. doi:10.2527/jas.2006-507 es_ES
dc.description.references Johnson, R. K., Zimmerman, D. R., & Kittok, R. J. (1984). Selection for components of reproduction in swine. Livestock Production Science, 11(6), 541-558. doi:10.1016/0301-6226(84)90070-8 es_ES
dc.description.references Rodrigues, P., Limback, D., McGinnis, L. K., Plancha, C. E., & Albertini, D. F. (2008). Oogenesis: Prospects and challenges for the future. Journal of Cellular Physiology, 216(2), 355-365. doi:10.1002/jcp.21473 es_ES
dc.description.references Cartuche, L., Pascual, M., Gómez, E. A., & Blasco, A. (2014). Economic weights in rabbit meat production. World Rabbit Science, 22(3), 165. doi:10.4995/wrs.2014.1747 es_ES
dc.description.references Zuelke, K. A., Jeffay, S. C., Zucker, R. M., & Perreault, S. D. (2002). Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos. Molecular Reproduction and Development, 64(1), 106-112. doi:10.1002/mrd.10214 es_ES
dc.description.references Tiwari, M., Prasad, S., Tripathi, A., Pandey, A. N., Ali, I., Singh, A. K., … Chaube, S. K. (2015). Apoptosis in mammalian oocytes: a review. Apoptosis, 20(8), 1019-1025. doi:10.1007/s10495-015-1136-y es_ES
dc.description.references Gerritsen, M. E., & Wagner, G. F. (2005). Stanniocalcin: No Longer Just a Fish Tale. Vitamins & Hormones, 105-135. doi:10.1016/s0083-6729(05)70004-2 es_ES
dc.description.references Jepsen, M. R., Kløverpris, S., Bøtkjær, J. A., Wissing, M. L., Andersen, C. Y., & Oxvig, C. (2016). The proteolytic activity of pregnancy-associated plasma protein-A is potentially regulated by stanniocalcin-1 and -2 during human ovarian follicle development. Human Reproduction, 31(4), 866-874. doi:10.1093/humrep/dew013 es_ES
dc.description.references Darcy, C. J., Davis, J. S., Woodberry, T., McNeil, Y. R., Stephens, D. P., Yeo, T. W., & Anstey, N. M. (2011). An Observational Cohort Study of the Kynurenine to Tryptophan Ratio in Sepsis: Association with Impaired Immune and Microvascular Function. PLoS ONE, 6(6), e21185. doi:10.1371/journal.pone.0021185 es_ES
dc.description.references Wirthgen, E., Tuchscherer, M., Otten, W., Domanska, G., Wollenhaupt, K., Tuchscherer, A., & Kanitz, E. (2013). Activation of indoleamine 2,3-dioxygenase by LPS in a porcine model. Innate Immunity, 20(1), 30-39. doi:10.1177/1753425913481252 es_ES
dc.description.references Mohib, K., Guan, Q., Diao, H., Du, C., & Jevnikar, A. M. (2007). Proapoptotic activity of indoleamine 2,3-dioxygenase expressed in renal tubular epithelial cells. American Journal of Physiology-Renal Physiology, 293(3), F801-F812. doi:10.1152/ajprenal.00044.2007 es_ES
dc.description.references Fallarino, F., Grohmann, U., Vacca, C., Bianchi, R., Orabona, C., Spreca, A., … Puccetti, P. (2002). T cell apoptosis by tryptophan catabolism. Cell Death & Differentiation, 9(10), 1069-1077. doi:10.1038/sj.cdd.4401073 es_ES
dc.description.references Wang, Q., Zhang, M., Ding, Y., Wang, Q., Zhang, W., Song, P., & Zou, M.-H. (2014). Activation of NAD(P)H Oxidase by Tryptophan-Derived 3-Hydroxykynurenine Accelerates Endothelial Apoptosis and Dysfunction In Vivo. Circulation Research, 114(3), 480-492. doi:10.1161/circresaha.114.302113 es_ES
dc.description.references Li, F., Zhang, R., Li, S., & Liu, J. (2017). IDO1: An important immunotherapy target in cancer treatment. International Immunopharmacology, 47, 70-77. doi:10.1016/j.intimp.2017.03.024 es_ES
dc.description.references Hill, M., Pereira, V., Chauveau, C., Zagani, R., Remy, S., Tesson, L., … Anegon, I. (2005). Heme oxygenase‐1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3‐dioxygenase. The FASEB Journal, 19(14), 1957-1968. doi:10.1096/fj.05-3875com es_ES
dc.description.references Lieuallen, K. (2001). Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Human Molecular Genetics, 10(18), 1867-1871. doi:10.1093/hmg/10.18.1867 es_ES
dc.description.references Pajaniappan, M., Glober, N. K., Kennard, S., Liu, H., Zhao, N., & Lilly, B. (2011). Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling. American Journal of Physiology-Heart and Circulatory Physiology, 301(3), H784-H793. doi:10.1152/ajpheart.00116.2011 es_ES
dc.description.references Duffy, D. M., Ko, C., Jo, M., Brannstrom, M., & Curry, T. E. (2018). Ovulation: Parallels With Inflammatory Processes. Endocrine Reviews, 40(2), 369-416. doi:10.1210/er.2018-00075 es_ES
dc.description.references LIU, C., LIU, Y., LIU, Y., WU, D., LUAN, Z., WANG, E., & YU, B. (2013). Ser 15 of WEE1B is a potential PKA phosphorylation target in G2/M transition in one-cell stage mouse embryos. Molecular Medicine Reports, 7(6), 1929-1937. doi:10.3892/mmr.2013.1437 es_ES
dc.description.references Han, S. J., Chen, R., Paronetto, M. P., & Conti, M. (2005). Wee1B Is an Oocyte-Specific Kinase Involved in the Control of Meiotic Arrest in the Mouse. Current Biology, 15(18), 1670-1676. doi:10.1016/j.cub.2005.07.056 es_ES
dc.description.references Nakanishi, M., Ando, H., Watanabe, N., Kitamura, K., Ito, K., Okayama, H., … Sasaki, M. (2000). Identification and characterization of human Wee1B, a new member of the Wee1 family of Cdk-inhibitory kinases. Genes to Cells, 5(10), 839-847. doi:10.1046/j.1365-2443.2000.00367.x es_ES
dc.description.references Oh, J. S., Susor, A., & Conti, M. (2011). Protein Tyrosine Kinase Wee1B Is Essential for Metaphase II Exit in Mouse Oocytes. Science, 332(6028), 462-465. doi:10.1126/science.1199211 es_ES
dc.description.references Castedo, M., Perfettini, J.-L., Roumier, T., & Kroemer, G. (2002). Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death & Differentiation, 9(12), 1287-1293. doi:10.1038/sj.cdd.4401130 es_ES
dc.description.references Golsteyn, R. M. (2005). Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Letters, 217(2), 129-138. doi:10.1016/j.canlet.2004.08.005 es_ES
dc.description.references Gu, L., Zheng, H., Murray, S. A., Ying, H., & Jim Xiao, Z.-X. (2003). Deregulation of Cdc2 kinase induces caspase-3 activation and apoptosis. Biochemical and Biophysical Research Communications, 302(2), 384-391. doi:10.1016/s0006-291x(03)00189-x es_ES
dc.description.references Sandal, T., Stapnes, C., Kleivdal, H., Hedin, L., & Døskeland, S. O. (2002). A Novel, Extraneuronal Role for Cyclin-dependent Protein Kinase 5 (CDK5). Journal of Biological Chemistry, 277(23), 20783-20793. doi:10.1074/jbc.m112248200 es_ES
dc.description.references Oh, J. S., Susor, A., Schindler, K., Schultz, R. M., & Conti, M. (2013). Cdc25A activity is required for the metaphase II arrest in mouse oocytes. Journal of Cell Science. doi:10.1242/jcs.115592 es_ES
dc.description.references Orciani, M., Trubiani, O., Guarnieri, S., Ferrero, E., & Di Primio, R. (2008). CD38 is constitutively expressed in the nucleus of human hematopoietic cells. Journal of Cellular Biochemistry, 105(3), 905-912. doi:10.1002/jcb.21887 es_ES
dc.description.references Partidá-Sánchez, S., Rivero-Nava, L., Shi, G., & Lund, F. E. (s. f.). CD38: An Ecto-Enzyme at the Crossroads of Innate and Adaptive Immune Responses. Crossroads between Innate and Adaptive Immunity, 171-183. doi:10.1007/978-0-387-34814-8_12 es_ES
dc.description.references Wang, L.-F., Miao, L.-J., Wang, X.-N., Huang, C.-C., Qian, Y.-S., Huang, X., … Xin, H.-B. (2017). CD38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating Sirt1/PPARγ signaling pathway. Journal of Cellular and Molecular Medicine, 22(1), 101-110. doi:10.1111/jcmm.13297 es_ES
dc.description.references Sun, L., Iqbal, J., Zaidi, S., Zhu, L.-L., Zhang, X., Peng, Y., … Zaidi, M. (2006). Structure and functional regulation of the CD38 promoter. Biochemical and Biophysical Research Communications, 341(3), 804-809. doi:10.1016/j.bbrc.2006.01.033 es_ES
dc.description.references Uche, U. U., Piccirillo, A. R., Kataoka, S., Grebinoski, S. J., D’Cruz, L. M., & Kane, L. P. (2018). PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt. Journal of Experimental Medicine, 215(12), 3165-3179. doi:10.1084/jem.20172018 es_ES
dc.description.references Chu, K. Y., Li, H., Wada, K., & Johnson, J. D. (2011). Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions. Diabetologia, 55(1), 128-140. doi:10.1007/s00125-011-2323-1 es_ES
dc.description.references Xiang, T., Li, L., Yin, X., Yuan, C., Tan, C., Su, X., … Tao, Q. (2012). The Ubiquitin Peptidase UCHL1 Induces G0/G1 Cell Cycle Arrest and Apoptosis Through Stabilizing p53 and Is Frequently Silenced in Breast Cancer. PLoS ONE, 7(1), e29783. doi:10.1371/journal.pone.0029783 es_ES
dc.description.references Kabuta, T., Mitsui, T., Takahashi, M., Fujiwara, Y., Kabuta, C., Konya, C., … Wada, K. (2013). Ubiquitin C-terminal Hydrolase L1 (UCH-L1) Acts as a Novel Potentiator of Cyclin-dependent Kinases to Enhance Cell Proliferation Independently of Its Hydrolase Activity. Journal of Biological Chemistry, 288(18), 12615-12626. doi:10.1074/jbc.m112.435701 es_ES
dc.description.references Koyanagi, S., Hamasaki, H., Sekiguchi, S., Hara, K., Ishii, Y., Kyuwa, S., & Yoshikawa, Y. (2012). Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova. REPRODUCTION, 143(3), 271-279. doi:10.1530/rep-11-0128 es_ES
dc.description.references Yao, Y.-W., Shi, Y., Jia, Z.-F., Jiang, Y.-H., Gu, Z., Wang, J., … Sun, Z.-G. (2011). PTOV1 is associated with UCH-L1 and in response to estrogen stimuli during the mouse oocyte development. Histochemistry and Cell Biology, 136(2), 205-215. doi:10.1007/s00418-011-0825-z es_ES
dc.description.references Boelte, K. C., Gordy, L. E., Joyce, S., Thompson, M. A., Yang, L., & Lin, P. C. (2011). Rgs2 Mediates Pro-Angiogenic Function of Myeloid Derived Suppressor Cells in the Tumor Microenvironment via Upregulation of MCP-1. PLoS ONE, 6(4), e18534. doi:10.1371/journal.pone.0018534 es_ES
dc.description.references Schwameis, M., Blann, A., Mannhalter, C., Jilma, B., & Siller-Matula, J. (2011). Thrombin as a multi-functional enzyme. Thrombosis and Haemostasis, 106(12), 1020-1033. doi:10.1160/th10-11-0711 es_ES
dc.description.references Van Blerkom, J., Antczak, M., & Schrader, R. (1997). The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Human Reproduction, 12(5), 1047-1055. doi:10.1093/humrep/12.5.1047 es_ES
dc.description.references Richards, J. S., Liu, Z., Kawai, T., Tabata, K., Watanabe, H., Suresh, D., … Shimada, M. (2012). Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertility and Sterility, 98(2), 471-479.e1. doi:10.1016/j.fertnstert.2012.04.050 es_ES
dc.description.references Lagaly, D. V., Aad, P. Y., Grado-Ahuir, J. A., Hulsey, L. B., & Spicer, L. J. (2008). Role of adiponectin in regulating ovarian theca and granulosa cell function. Molecular and Cellular Endocrinology, 284(1-2), 38-45. doi:10.1016/j.mce.2008.01.007 es_ES
dc.description.references Palin, M.-F., Bordignon, V. V., & Murphy, B. D. (2012). Adiponectin and the Control of Female Reproductive Functions. Vitamins & Hormones, 239-287. doi:10.1016/b978-0-12-398313-8.00010-5 es_ES
dc.description.references Wickham, E. P., Tao, T., Nestler, J. E., & McGee, E. A. (2013). Activation of the LH receptor up regulates the type 2 adiponectin receptor in human granulosa cells. Journal of Assisted Reproduction and Genetics, 30(7), 963-968. doi:10.1007/s10815-013-0012-3 es_ES
dc.description.references Chappaz, E., Albornoz, M. S., Campos, D., Che, L., Palin, M.-F., Murphy, B. D., & Bordignon, V. (2008). Adiponectin enhances in vitro development of swine embryos. Domestic Animal Endocrinology, 35(2), 198-207. doi:10.1016/j.domaniend.2008.05.007 es_ES
dc.description.references Elis, S., Coyral-Castel, S., Freret, S., Cognié, J., Desmarchais, A., Fatet, A., … Dupont, J. (2013). Expression of adipokine and lipid metabolism genes in adipose tissue of dairy cows differing in a female fertility quantitative trait locus. Journal of Dairy Science, 96(12), 7591-7602. doi:10.3168/jds.2013-6615 es_ES
dc.description.references Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. Journal of Cell Science, 121(6), 737-746. doi:10.1242/jcs.026096 es_ES
dc.description.references Arslanoglu, S., Bertino, E., Tonetto, P., De Nisi, G., Ambruzzi, A. M., Biasini, A., … Moro, G. E. (2010). Guidelines for the establishment and operation of a donor human milk bank. The Journal of Maternal-Fetal & Neonatal Medicine, 23(sup2), 1-20. doi:10.3109/14767058.2010.512414 es_ES
dc.description.references LIN, C.-T., LIN, Y.-T., & KUO, T.-F. (2007). Investigation of mRNA Expression for Secreted Frizzled-Related Protein 2 (sFRP2) in Chick Embryos. Journal of Reproduction and Development, 53(4), 801-810. doi:10.1262/jrd.18081 es_ES
dc.description.references Jaatinen, R., Bondestam, J., Raivio, T., Hildén, K., Dunkel, L., Groome, N., & Ritvos, O. (2002). Activation of the Bone Morphogenetic Protein Signaling Pathway Induces Inhibin βB-Subunit mRNA and Secreted Inhibin B Levels in Cultured Human Granulosa-Luteal Cells. The Journal of Clinical Endocrinology & Metabolism, 87(3), 1254-1261. doi:10.1210/jcem.87.3.8314 es_ES
dc.description.references De Gottardi, A., Dumonceau, J.-M., Bruttin, F., Vonlaufen, A., Morard, I., Spahr, L., … Hadengue, A. (2006). Molecular Cancer, 5(1), 48. doi:10.1186/1476-4598-5-48 es_ES
dc.description.references LUTWAK-MANN, C. (1955). CARBONIC ANHYDRASE IN THE FEMALE REPRODUCTIVE TRACT. OCCURRENCE, DISTRIBUTION AND HORMONAL DEPENDENCE. Journal of Endocrinology, 13(1), 26-38. doi:10.1677/joe.0.0130026 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem