- -

Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits

Mostrar el registro completo del ítem

Serna-García, M.; Peiró Barber, RM.; Serna, E.; Santacreu Jerez, MA. (2020). Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits. Animals. 10(10):1-11. https://doi.org/10.3390/ani10101924

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167008

Ficheros en el ítem

Metadatos del ítem

Título: Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits
Autor: Serna-García, Marta Peiró Barber, Rosa Mª Serna, Eva Santacreu Jerez, María Antonia
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] Transcriptomic analysis showed nineteen potential biomarkers in ovarian tissue from females belonged to a rabbit line selected for ovulation rate for 10 generations and the control line. These females differed not ...[+]
Palabras clave: Ovulation rate , Litter size , Transcriptomic analysis , Rabbit , Ovarian tissue
Derechos de uso: Reconocimiento (by)
Fuente:
Animals. (eissn: 2076-2615 )
DOI: 10.3390/ani10101924
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ani10101924
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2014-55921-C2-1-P/ES/ESTUDIO GENOMICO Y METABOLOMICO DE VARIAS LINEAS DE SELECCION DIVERGENTE EN CONEJO: EL CONEJO COMO MODELO EXPERIMENTAL/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F125/ES/Efecto de la crioconservación de embriones sobre el desarrollo y el re-establecimiento de poblaciones/
Agradecimientos:
This research was supported by MEC (AGL2014-55921-C2-1-P) and Generalitat Valenciana (Prometeo 2009/125).
Tipo: Artículo

References

Laborda, P., Mocé, M. L., Blasco, A., & Santacreu, M. A. (2012). Selection for ovulation rate in rabbits: Genetic parameters and correlated responses on survival rates1. Journal of Animal Science, 90(2), 439-446. doi:10.2527/jas.2011-4219

Laborda, P., Mocé, M. L., Santacreu, M. A., & Blasco, A. (2011). Selection for ovulation rate in rabbits: Genetic parameters, direct response, and correlated response on litter size1. Journal of Animal Science, 89(10), 2981-2987. doi:10.2527/jas.2011-3906

Laborda, P., Santacreu, M. A., Blasco, A., & Mocé, M. L. (2012). Selection for ovulation rate in rabbits: Direct and correlated responses estimated with a cryopreserved control population1. Journal of Animal Science, 90(10), 3392-3397. doi:10.2527/jas.2011-4837 [+]
Laborda, P., Mocé, M. L., Blasco, A., & Santacreu, M. A. (2012). Selection for ovulation rate in rabbits: Genetic parameters and correlated responses on survival rates1. Journal of Animal Science, 90(2), 439-446. doi:10.2527/jas.2011-4219

Laborda, P., Mocé, M. L., Santacreu, M. A., & Blasco, A. (2011). Selection for ovulation rate in rabbits: Genetic parameters, direct response, and correlated response on litter size1. Journal of Animal Science, 89(10), 2981-2987. doi:10.2527/jas.2011-3906

Laborda, P., Santacreu, M. A., Blasco, A., & Mocé, M. L. (2012). Selection for ovulation rate in rabbits: Direct and correlated responses estimated with a cryopreserved control population1. Journal of Animal Science, 90(10), 3392-3397. doi:10.2527/jas.2011-4837

Cunningham, P. J., England, M. E., Young, L. D., & Zimmerman, D. R. (1979). Selection for Ovulation Rate in Swine: Correlated Response in Litter Size and Weight. Journal of Animal Science, 48(3), 509-516. doi:10.2527/jas1979.483509x

Rosendo, A., Druet, T., Gogué, J., & Bidanel, J. P. (2007). Direct responses to six generations of selection for ovulation rate or prenatal survival in Large White pigs. Journal of Animal Science, 85(2), 356-364. doi:10.2527/jas.2006-507

Johnson, R. K., Zimmerman, D. R., & Kittok, R. J. (1984). Selection for components of reproduction in swine. Livestock Production Science, 11(6), 541-558. doi:10.1016/0301-6226(84)90070-8

Rodrigues, P., Limback, D., McGinnis, L. K., Plancha, C. E., & Albertini, D. F. (2008). Oogenesis: Prospects and challenges for the future. Journal of Cellular Physiology, 216(2), 355-365. doi:10.1002/jcp.21473

Cartuche, L., Pascual, M., Gómez, E. A., & Blasco, A. (2014). Economic weights in rabbit meat production. World Rabbit Science, 22(3), 165. doi:10.4995/wrs.2014.1747

Zuelke, K. A., Jeffay, S. C., Zucker, R. M., & Perreault, S. D. (2002). Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos. Molecular Reproduction and Development, 64(1), 106-112. doi:10.1002/mrd.10214

Tiwari, M., Prasad, S., Tripathi, A., Pandey, A. N., Ali, I., Singh, A. K., … Chaube, S. K. (2015). Apoptosis in mammalian oocytes: a review. Apoptosis, 20(8), 1019-1025. doi:10.1007/s10495-015-1136-y

Gerritsen, M. E., & Wagner, G. F. (2005). Stanniocalcin: No Longer Just a Fish Tale. Vitamins & Hormones, 105-135. doi:10.1016/s0083-6729(05)70004-2

Jepsen, M. R., Kløverpris, S., Bøtkjær, J. A., Wissing, M. L., Andersen, C. Y., & Oxvig, C. (2016). The proteolytic activity of pregnancy-associated plasma protein-A is potentially regulated by stanniocalcin-1 and -2 during human ovarian follicle development. Human Reproduction, 31(4), 866-874. doi:10.1093/humrep/dew013

Darcy, C. J., Davis, J. S., Woodberry, T., McNeil, Y. R., Stephens, D. P., Yeo, T. W., & Anstey, N. M. (2011). An Observational Cohort Study of the Kynurenine to Tryptophan Ratio in Sepsis: Association with Impaired Immune and Microvascular Function. PLoS ONE, 6(6), e21185. doi:10.1371/journal.pone.0021185

Wirthgen, E., Tuchscherer, M., Otten, W., Domanska, G., Wollenhaupt, K., Tuchscherer, A., & Kanitz, E. (2013). Activation of indoleamine 2,3-dioxygenase by LPS in a porcine model. Innate Immunity, 20(1), 30-39. doi:10.1177/1753425913481252

Mohib, K., Guan, Q., Diao, H., Du, C., & Jevnikar, A. M. (2007). Proapoptotic activity of indoleamine 2,3-dioxygenase expressed in renal tubular epithelial cells. American Journal of Physiology-Renal Physiology, 293(3), F801-F812. doi:10.1152/ajprenal.00044.2007

Fallarino, F., Grohmann, U., Vacca, C., Bianchi, R., Orabona, C., Spreca, A., … Puccetti, P. (2002). T cell apoptosis by tryptophan catabolism. Cell Death & Differentiation, 9(10), 1069-1077. doi:10.1038/sj.cdd.4401073

Wang, Q., Zhang, M., Ding, Y., Wang, Q., Zhang, W., Song, P., & Zou, M.-H. (2014). Activation of NAD(P)H Oxidase by Tryptophan-Derived 3-Hydroxykynurenine Accelerates Endothelial Apoptosis and Dysfunction In Vivo. Circulation Research, 114(3), 480-492. doi:10.1161/circresaha.114.302113

Li, F., Zhang, R., Li, S., & Liu, J. (2017). IDO1: An important immunotherapy target in cancer treatment. International Immunopharmacology, 47, 70-77. doi:10.1016/j.intimp.2017.03.024

Hill, M., Pereira, V., Chauveau, C., Zagani, R., Remy, S., Tesson, L., … Anegon, I. (2005). Heme oxygenase‐1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3‐dioxygenase. The FASEB Journal, 19(14), 1957-1968. doi:10.1096/fj.05-3875com

Lieuallen, K. (2001). Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Human Molecular Genetics, 10(18), 1867-1871. doi:10.1093/hmg/10.18.1867

Pajaniappan, M., Glober, N. K., Kennard, S., Liu, H., Zhao, N., & Lilly, B. (2011). Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling. American Journal of Physiology-Heart and Circulatory Physiology, 301(3), H784-H793. doi:10.1152/ajpheart.00116.2011

Duffy, D. M., Ko, C., Jo, M., Brannstrom, M., & Curry, T. E. (2018). Ovulation: Parallels With Inflammatory Processes. Endocrine Reviews, 40(2), 369-416. doi:10.1210/er.2018-00075

LIU, C., LIU, Y., LIU, Y., WU, D., LUAN, Z., WANG, E., & YU, B. (2013). Ser 15 of WEE1B is a potential PKA phosphorylation target in G2/M transition in one-cell stage mouse embryos. Molecular Medicine Reports, 7(6), 1929-1937. doi:10.3892/mmr.2013.1437

Han, S. J., Chen, R., Paronetto, M. P., & Conti, M. (2005). Wee1B Is an Oocyte-Specific Kinase Involved in the Control of Meiotic Arrest in the Mouse. Current Biology, 15(18), 1670-1676. doi:10.1016/j.cub.2005.07.056

Nakanishi, M., Ando, H., Watanabe, N., Kitamura, K., Ito, K., Okayama, H., … Sasaki, M. (2000). Identification and characterization of human Wee1B, a new member of the Wee1 family of Cdk-inhibitory kinases. Genes to Cells, 5(10), 839-847. doi:10.1046/j.1365-2443.2000.00367.x

Oh, J. S., Susor, A., & Conti, M. (2011). Protein Tyrosine Kinase Wee1B Is Essential for Metaphase II Exit in Mouse Oocytes. Science, 332(6028), 462-465. doi:10.1126/science.1199211

Castedo, M., Perfettini, J.-L., Roumier, T., & Kroemer, G. (2002). Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death & Differentiation, 9(12), 1287-1293. doi:10.1038/sj.cdd.4401130

Golsteyn, R. M. (2005). Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Letters, 217(2), 129-138. doi:10.1016/j.canlet.2004.08.005

Gu, L., Zheng, H., Murray, S. A., Ying, H., & Jim Xiao, Z.-X. (2003). Deregulation of Cdc2 kinase induces caspase-3 activation and apoptosis. Biochemical and Biophysical Research Communications, 302(2), 384-391. doi:10.1016/s0006-291x(03)00189-x

Sandal, T., Stapnes, C., Kleivdal, H., Hedin, L., & Døskeland, S. O. (2002). A Novel, Extraneuronal Role for Cyclin-dependent Protein Kinase 5 (CDK5). Journal of Biological Chemistry, 277(23), 20783-20793. doi:10.1074/jbc.m112248200

Oh, J. S., Susor, A., Schindler, K., Schultz, R. M., & Conti, M. (2013). Cdc25A activity is required for the metaphase II arrest in mouse oocytes. Journal of Cell Science. doi:10.1242/jcs.115592

Orciani, M., Trubiani, O., Guarnieri, S., Ferrero, E., & Di Primio, R. (2008). CD38 is constitutively expressed in the nucleus of human hematopoietic cells. Journal of Cellular Biochemistry, 105(3), 905-912. doi:10.1002/jcb.21887

Partidá-Sánchez, S., Rivero-Nava, L., Shi, G., & Lund, F. E. (s. f.). CD38: An Ecto-Enzyme at the Crossroads of Innate and Adaptive Immune Responses. Crossroads between Innate and Adaptive Immunity, 171-183. doi:10.1007/978-0-387-34814-8_12

Wang, L.-F., Miao, L.-J., Wang, X.-N., Huang, C.-C., Qian, Y.-S., Huang, X., … Xin, H.-B. (2017). CD38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating Sirt1/PPARγ signaling pathway. Journal of Cellular and Molecular Medicine, 22(1), 101-110. doi:10.1111/jcmm.13297

Sun, L., Iqbal, J., Zaidi, S., Zhu, L.-L., Zhang, X., Peng, Y., … Zaidi, M. (2006). Structure and functional regulation of the CD38 promoter. Biochemical and Biophysical Research Communications, 341(3), 804-809. doi:10.1016/j.bbrc.2006.01.033

Uche, U. U., Piccirillo, A. R., Kataoka, S., Grebinoski, S. J., D’Cruz, L. M., & Kane, L. P. (2018). PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt. Journal of Experimental Medicine, 215(12), 3165-3179. doi:10.1084/jem.20172018

Chu, K. Y., Li, H., Wada, K., & Johnson, J. D. (2011). Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions. Diabetologia, 55(1), 128-140. doi:10.1007/s00125-011-2323-1

Xiang, T., Li, L., Yin, X., Yuan, C., Tan, C., Su, X., … Tao, Q. (2012). The Ubiquitin Peptidase UCHL1 Induces G0/G1 Cell Cycle Arrest and Apoptosis Through Stabilizing p53 and Is Frequently Silenced in Breast Cancer. PLoS ONE, 7(1), e29783. doi:10.1371/journal.pone.0029783

Kabuta, T., Mitsui, T., Takahashi, M., Fujiwara, Y., Kabuta, C., Konya, C., … Wada, K. (2013). Ubiquitin C-terminal Hydrolase L1 (UCH-L1) Acts as a Novel Potentiator of Cyclin-dependent Kinases to Enhance Cell Proliferation Independently of Its Hydrolase Activity. Journal of Biological Chemistry, 288(18), 12615-12626. doi:10.1074/jbc.m112.435701

Koyanagi, S., Hamasaki, H., Sekiguchi, S., Hara, K., Ishii, Y., Kyuwa, S., & Yoshikawa, Y. (2012). Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova. REPRODUCTION, 143(3), 271-279. doi:10.1530/rep-11-0128

Yao, Y.-W., Shi, Y., Jia, Z.-F., Jiang, Y.-H., Gu, Z., Wang, J., … Sun, Z.-G. (2011). PTOV1 is associated with UCH-L1 and in response to estrogen stimuli during the mouse oocyte development. Histochemistry and Cell Biology, 136(2), 205-215. doi:10.1007/s00418-011-0825-z

Boelte, K. C., Gordy, L. E., Joyce, S., Thompson, M. A., Yang, L., & Lin, P. C. (2011). Rgs2 Mediates Pro-Angiogenic Function of Myeloid Derived Suppressor Cells in the Tumor Microenvironment via Upregulation of MCP-1. PLoS ONE, 6(4), e18534. doi:10.1371/journal.pone.0018534

Schwameis, M., Blann, A., Mannhalter, C., Jilma, B., & Siller-Matula, J. (2011). Thrombin as a multi-functional enzyme. Thrombosis and Haemostasis, 106(12), 1020-1033. doi:10.1160/th10-11-0711

Van Blerkom, J., Antczak, M., & Schrader, R. (1997). The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Human Reproduction, 12(5), 1047-1055. doi:10.1093/humrep/12.5.1047

Richards, J. S., Liu, Z., Kawai, T., Tabata, K., Watanabe, H., Suresh, D., … Shimada, M. (2012). Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertility and Sterility, 98(2), 471-479.e1. doi:10.1016/j.fertnstert.2012.04.050

Lagaly, D. V., Aad, P. Y., Grado-Ahuir, J. A., Hulsey, L. B., & Spicer, L. J. (2008). Role of adiponectin in regulating ovarian theca and granulosa cell function. Molecular and Cellular Endocrinology, 284(1-2), 38-45. doi:10.1016/j.mce.2008.01.007

Palin, M.-F., Bordignon, V. V., & Murphy, B. D. (2012). Adiponectin and the Control of Female Reproductive Functions. Vitamins & Hormones, 239-287. doi:10.1016/b978-0-12-398313-8.00010-5

Wickham, E. P., Tao, T., Nestler, J. E., & McGee, E. A. (2013). Activation of the LH receptor up regulates the type 2 adiponectin receptor in human granulosa cells. Journal of Assisted Reproduction and Genetics, 30(7), 963-968. doi:10.1007/s10815-013-0012-3

Chappaz, E., Albornoz, M. S., Campos, D., Che, L., Palin, M.-F., Murphy, B. D., & Bordignon, V. (2008). Adiponectin enhances in vitro development of swine embryos. Domestic Animal Endocrinology, 35(2), 198-207. doi:10.1016/j.domaniend.2008.05.007

Elis, S., Coyral-Castel, S., Freret, S., Cognié, J., Desmarchais, A., Fatet, A., … Dupont, J. (2013). Expression of adipokine and lipid metabolism genes in adipose tissue of dairy cows differing in a female fertility quantitative trait locus. Journal of Dairy Science, 96(12), 7591-7602. doi:10.3168/jds.2013-6615

Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. Journal of Cell Science, 121(6), 737-746. doi:10.1242/jcs.026096

Arslanoglu, S., Bertino, E., Tonetto, P., De Nisi, G., Ambruzzi, A. M., Biasini, A., … Moro, G. E. (2010). Guidelines for the establishment and operation of a donor human milk bank. The Journal of Maternal-Fetal & Neonatal Medicine, 23(sup2), 1-20. doi:10.3109/14767058.2010.512414

LIN, C.-T., LIN, Y.-T., & KUO, T.-F. (2007). Investigation of mRNA Expression for Secreted Frizzled-Related Protein 2 (sFRP2) in Chick Embryos. Journal of Reproduction and Development, 53(4), 801-810. doi:10.1262/jrd.18081

Jaatinen, R., Bondestam, J., Raivio, T., Hildén, K., Dunkel, L., Groome, N., & Ritvos, O. (2002). Activation of the Bone Morphogenetic Protein Signaling Pathway Induces Inhibin βB-Subunit mRNA and Secreted Inhibin B Levels in Cultured Human Granulosa-Luteal Cells. The Journal of Clinical Endocrinology & Metabolism, 87(3), 1254-1261. doi:10.1210/jcem.87.3.8314

De Gottardi, A., Dumonceau, J.-M., Bruttin, F., Vonlaufen, A., Morard, I., Spahr, L., … Hadengue, A. (2006). Molecular Cancer, 5(1), 48. doi:10.1186/1476-4598-5-48

LUTWAK-MANN, C. (1955). CARBONIC ANHYDRASE IN THE FEMALE REPRODUCTIVE TRACT. OCCURRENCE, DISTRIBUTION AND HORMONAL DEPENDENCE. Journal of Endocrinology, 13(1), 26-38. doi:10.1677/joe.0.0130026

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem