Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz, Marta | es_ES |
dc.contributor.author | Torres-Pagán, Natalia | es_ES |
dc.contributor.author | Peiró Barber, Rosa Mª | es_ES |
dc.contributor.author | Guijarro, Rubén | es_ES |
dc.contributor.author | Sánchez-Moreiras, Adela M. | es_ES |
dc.contributor.author | Verdeguer Sancho, Mercedes María | es_ES |
dc.date.accessioned | 2021-06-01T03:32:20Z | |
dc.date.available | 2021-06-01T03:32:20Z | |
dc.date.issued | 2020-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167009 | |
dc.description.abstract | [EN] Weeds and herbicides are important stress factors for crops. Weeds are responsible for great losses in crop yields, more than 50% in some crops if left uncontrolled. Herbicides have been used as the main method for weed control since their development after the Second World War. It is necessary to find alternatives to synthetic herbicides that can be incorporated in an Integrated Weed Management Program, to produce crops subjected to less stress in a more sustainable way. In this work, three natural products: pelargonic acid (PA), carvacrol (CV), and cinnamic aldehyde (CA) were evaluated, under greenhouse conditions in postemergence assays, against problematic weeds in Mediterranean cropsAmaranthus retroflexus,Avena fatua,Portulaca oleracea,andErigeron bonariensis, to determine their phytotoxic potential. The three products showed a potent herbicidal activity, reaching high efficacy (plant death) and damage level in all species, being PA the most effective at all doses applied, followed by CA and CV. These products could be good candidates for bioherbicides formulations. | es_ES |
dc.description.sponsorship | This research was funded by SEIPASA. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Weeds | es_ES |
dc.subject | Abiotic stress | es_ES |
dc.subject | Natural herbicides | es_ES |
dc.subject | Secondary metabolites | es_ES |
dc.subject | Postemergence | es_ES |
dc.subject | Phytotoxicity | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.title | Phytotoxic Effects of Three Natural Compounds: Pelargonic Acid, Carvacrol, and Cinnamic Aldehyde, against Problematic Weeds in Mediterranean Crops | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy10060791 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.description.bibliographicCitation | Muñoz, M.; Torres-Pagán, N.; Peiró Barber, RM.; Guijarro, R.; Sánchez-Moreiras, AM.; Verdeguer Sancho, MM. (2020). Phytotoxic Effects of Three Natural Compounds: Pelargonic Acid, Carvacrol, and Cinnamic Aldehyde, against Problematic Weeds in Mediterranean Crops. Agronomy. 10(6):1-20. https://doi.org/10.3390/agronomy10060791 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy10060791 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\416871 | es_ES |
dc.contributor.funder | SEIPASA | es_ES |
dc.description.references | Vos, R., & Bellù, L. G. (2019). Global Trends and Challenges to Food and Agriculture into the 21st Century. Sustainable Food and Agriculture, 11-30. doi:10.1016/b978-0-12-812134-4.00002-9 | es_ES |
dc.description.references | Vats, S. (2014). Herbicides: History, Classification and Genetic Manipulation of Plants for Herbicide Resistance. Sustainable Agriculture Reviews, 153-192. doi:10.1007/978-3-319-09132-7_3 | es_ES |
dc.description.references | Bagavathiannan, M., Singh, V., Govindasamy, P., Abugho, S. B., & Liu, R. (2017). Impact of Concurrent Weed or Herbicide Stress with Other Biotic and Abiotic Stressors on Crop Production. Plant Tolerance to Individual and Concurrent Stresses, 33-45. doi:10.1007/978-81-322-3706-8_3 | es_ES |
dc.description.references | The International Code of Conduct on Pesticide Management. Rome http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/code/en/ | es_ES |
dc.description.references | Villa, F., Cappitelli, F., Cortesi, P., & Kunova, A. (2017). Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00654 | es_ES |
dc.description.references | Da Mastro, G., Fracchiolla, M., Verdini, L., & Montemurro, P. (2006). OREGANO AND ITS POTENTIAL USE AS BIOHERBICIDE. Acta Horticulturae, (723), 335-346. doi:10.17660/actahortic.2006.723.46 | es_ES |
dc.description.references | Seiber, J. N., Coats, J., Duke, S. O., & Gross, A. D. (2014). Biopesticides: State of the Art and Future Opportunities. Journal of Agricultural and Food Chemistry, 62(48), 11613-11619. doi:10.1021/jf504252n | es_ES |
dc.description.references | Dahiya, A., Sharma, R., Sindhu, S., & Sindhu, S. S. (2019). Resource partitioning in the rhizosphere by inoculated Bacillus spp. towards growth stimulation of wheat and suppression of wild oat (Avena fatua L.) weed. Physiology and Molecular Biology of Plants, 25(6), 1483-1495. doi:10.1007/s12298-019-00710-3 | es_ES |
dc.description.references | The International Herbicide-Resistant Weed Database www.weedscience.org | es_ES |
dc.description.references | Hazrati, H., Saharkhiz, M. J., Moein, M., & Khoshghalb, H. (2018). Phytotoxic effects of several essential oils on two weed species and Tomato. Biocatalysis and Agricultural Biotechnology, 13, 204-212. doi:10.1016/j.bcab.2017.12.014 | es_ES |
dc.description.references | Bajwa, A. A., Sadia, S., Ali, H. H., Jabran, K., Peerzada, A. M., & Chauhan, B. S. (2016). Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 23(24), 24694-24710. doi:10.1007/s11356-016-7794-7 | es_ES |
dc.description.references | Graziani, F., Onofri, A., Pannacci, E., Tei, F., & Guiducci, M. (2012). Size and composition of weed seedbank in long-term organic and conventional low-input cropping systems. European Journal of Agronomy, 39, 52-61. doi:10.1016/j.eja.2012.01.008 | es_ES |
dc.description.references | Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1). doi:10.1186/s12302-016-0070-0 | es_ES |
dc.description.references | Salamci, E., Kordali, S., Kotan, R., Cakir, A., & Kaya, Y. (2007). Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliophyllum var. chiliophyllum. Biochemical Systematics and Ecology, 35(9), 569-581. doi:10.1016/j.bse.2007.03.012 | es_ES |
dc.description.references | Synowiec, A., Kalemba, D., Drozdek, E., & Bocianowski, J. (2016). Phytotoxic potential of essential oils from temperate climate plants against the germination of selected weeds and crops. Journal of Pest Science, 90(1), 407-419. doi:10.1007/s10340-016-0759-2 | es_ES |
dc.description.references | Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety, 142, 423-430. doi:10.1016/j.ecoenv.2017.04.041 | es_ES |
dc.description.references | Verdeguer, M., Blázquez, M. A., & Boira, H. (2009). Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochemical Systematics and Ecology, 37(4), 362-369. doi:10.1016/j.bse.2009.06.003 | es_ES |
dc.description.references | Benarab, H., Fenni, M., Louadj, Y., Boukhabti, H., & Ramdani, M. (2020). Allelopathic activity of essential oil extracts from Artemisia herba-alba Asso. on seed and seedling germination of weed and wheat crops. Acta Scientifica Naturalis, 7(1), 86-97. doi:10.2478/asn-2020-0009 | es_ES |
dc.description.references | Benchaa, S., Hazzit, M., & Abdelkrim, H. (2018). Allelopathic Effect ofEucalyptus citriodoraEssential Oil and Its Potential Use as Bioherbicide. Chemistry & Biodiversity, 15(8), e1800202. doi:10.1002/cbdv.201800202 | es_ES |
dc.description.references | Verdeguer, M., Castañeda, L. G., Torres-Pagan, N., Llorens-Molina, J. A., & Carrubba, A. (2020). Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules, 25(3), 562. doi:10.3390/molecules25030562 | es_ES |
dc.description.references | Scavo, A., Pandino, G., Restuccia, A., & Mauromicale, G. (2020). Leaf extracts of cultivated cardoon as potential bioherbicide. Scientia Horticulturae, 261, 109024. doi:10.1016/j.scienta.2019.109024 | es_ES |
dc.description.references | Ma, S., Fu, L., He, S., Lu, X., Wu, Y., Ma, Z., & Zhang, X. (2018). Potent herbicidal activity of Sapindus mukorossi Gaertn. against Avena fatua L. and Amaranthus retroflexus L. Industrial Crops and Products, 122, 1-6. doi:10.1016/j.indcrop.2018.05.046 | es_ES |
dc.description.references | Pacanoski, Z., & Mehmeti, A. (2019). Allelopathic effect of Siberian iris (Iris sibirica) on the early growth of wild oat (Avena fatua) and Canada thistle (Cirsium arvense). Journal of Central European Agriculture, 20(4), 1179-1187. doi:10.5513/jcea01/20.4.2047 | es_ES |
dc.description.references | Bainard, L. D., Isman, M. B., & Upadhyaya, M. K. (2006). Phytotoxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Science, 54(5), 833-837. doi:10.1614/ws-06-039r.1 | es_ES |
dc.description.references | Ahuja, N., Singh, H. P., Batish, D. R., & Kohli, R. K. (2015). Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage. Pesticide Biochemistry and Physiology, 118, 64-70. doi:10.1016/j.pestbp.2014.11.012 | es_ES |
dc.description.references | Vaughn, S. F., & Spencer, G. F. (1993). Volatile Monoterpenes as Potential Parent Structures for New Herbicides. Weed Science, 41(1), 114-119. doi:10.1017/s0043174500057672 | es_ES |
dc.description.references | Verdeguer, M., García-Rellán, D., Boira, H., Pérez, E., Gandolfo, S., & Blázquez, M. A. (2011). Herbicidal Activity of Peumus boldus and Drimys winterii Essential Oils from Chile. Molecules, 16(1), 403-411. doi:10.3390/molecules16010403 | es_ES |
dc.description.references | Saad, M. M. G., Abdelgaleil, S. A. M., & Suganuma, T. (2012). Herbicidal potential of pseudoguaninolide sesquiterpenes on wild oat, Avena fatua L. Biochemical Systematics and Ecology, 44, 333-337. doi:10.1016/j.bse.2012.06.004 | es_ES |
dc.description.references | Araniti, F., Sánchez-Moreiras, A. M., Graña, E., Reigosa, M. J., & Abenavoli, M. R. (2016). Terpenoidtrans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adultArabidopsis. Plant Biology, 19(1), 79-89. doi:10.1111/plb.12471 | es_ES |
dc.description.references | Coleman, R., & Penner, D. (2008). Organic Acid Enhancement of Pelargonic Acid. Weed Technology, 22(1), 38-41. doi:10.1614/wt-06-195.1 | es_ES |
dc.description.references | Dayan, F. E., & Duke, S. O. (2014). Natural Compounds as Next-Generation Herbicides. PLANT PHYSIOLOGY, 166(3), 1090-1105. doi:10.1104/pp.114.239061 | es_ES |
dc.description.references | Lebecque, S., Lins, L., Dayan, F. E., Fauconnier, M.-L., & Deleu, M. (2019). Interactions Between Natural Herbicides and Lipid Bilayers Mimicking the Plant Plasma Membrane. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00329 | es_ES |
dc.description.references | Gruenwald, J., Freder, J., & Armbruester, N. (2010). Cinnamon and Health. Critical Reviews in Food Science and Nutrition, 50(9), 822-834. doi:10.1080/10408390902773052 | es_ES |
dc.description.references | Viazis, S., Akhtar, M., Feirtag, J., & Diez-Gonzalez, F. (2011). Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiology, 28(1), 149-157. doi:10.1016/j.fm.2010.09.009 | es_ES |
dc.description.references | Kwon, J. A., Yu, C. B., & Park, H. D. (2003). Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Letters in Applied Microbiology, 37(1), 61-65. doi:10.1046/j.1472-765x.2003.01350.x | es_ES |
dc.description.references | Friedman, M. (2017). Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. Journal of Agricultural and Food Chemistry, 65(48), 10406-10423. doi:10.1021/acs.jafc.7b04344 | es_ES |
dc.description.references | Saad, M. M. G., Gouda, N. A. A., & Abdelgaleil, S. A. M. (2019). Bioherbicidal activity of terpenes and phenylpropenes against Echinochloa crus-galli. Journal of Environmental Science and Health, Part B, 54(12), 954-963. doi:10.1080/03601234.2019.1653121 | es_ES |
dc.description.references | Roselló, J., Sempere, F., Sanz-Berzosa, I., Chiralt, A., & Santamarina, M. P. (2015). Antifungal Activity and Potential Use of Essential Oils AgainstFusarium culmorumandFusarium verticillioides. Journal of Essential Oil Bearing Plants, 18(2), 359-367. doi:10.1080/0972060x.2015.1010601 | es_ES |
dc.description.references | Santamarina, M., Ibáñez, M., Marqués, M., Roselló, J., Giménez, S., & Blázquez, M. (2017). Bioactivity of essential oils in phytopathogenic and post-harvest fungi control. Natural Product Research, 31(22), 2675-2679. doi:10.1080/14786419.2017.1286479 | es_ES |
dc.description.references | Krepker, M., Shemesh, R., Danin Poleg, Y., Kashi, Y., Vaxman, A., & Segal, E. (2017). Active food packaging films with synergistic antimicrobial activity. Food Control, 76, 117-126. doi:10.1016/j.foodcont.2017.01.014 | es_ES |
dc.description.references | Ye, H., Shen, S., Xu, J., Lin, S., Yuan, Y., & Jones, G. S. (2013). Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria. Food Control, 34(2), 619-623. doi:10.1016/j.foodcont.2013.05.032 | es_ES |
dc.description.references | WU, H., WALKER, S., ROLLIN, M. J., TAN, D. K. Y., ROBINSON, G., & WERTH, J. (2007). Germination, persistence, and emergence of flaxleaf fleabane (Conyza bonariensis [L.] Cronquist). Weed Biology and Management, 7(3), 192-199. doi:10.1111/j.1445-6664.2007.00256.x | es_ES |
dc.description.references | Mithila, J., Swanton, C. J., Blackshaw, R. E., Cathcart, R. J., & Hall, J. C. (2008). Physiological Basis for Reduced Glyphosate Efficacy on Weeds Grown Under Low Soil Nitrogen. Weed Science, 56(1), 12-17. doi:10.1614/ws-07-072.1 | es_ES |
dc.description.references | SANDBERG, C. L., MEGGITT, W. F., & PENNER, D. (1980). Absorption, translocation and metabolism of 14C-glyphosate in several weed species*. Weed Research, 20(4), 195-200. doi:10.1111/j.1365-3180.1980.tb00068.x | es_ES |
dc.description.references | Lederer, B., Fujimori, T., Tsujino, Y., Wakabayashi, K., & Böger, P. (2004). Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects. Pesticide Biochemistry and Physiology, 80(3), 151-156. doi:10.1016/j.pestbp.2004.06.010 | es_ES |
dc.description.references | Hasanuzzaman, M., Mohsin, S. M., Bhuyan, M. H. M. B., Bhuiyan, T. F., Anee, T. I., Masud, A. A. C., & Nahar, K. (2020). Phytotoxicity, environmental and health hazards of herbicides: challenges and ways forward. Agrochemicals Detection, Treatment and Remediation, 55-99. doi:10.1016/b978-0-08-103017-2.00003-9 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |