Vos, R., & Bellù, L. G. (2019). Global Trends and Challenges to Food and Agriculture into the 21st Century. Sustainable Food and Agriculture, 11-30. doi:10.1016/b978-0-12-812134-4.00002-9
Vats, S. (2014). Herbicides: History, Classification and Genetic Manipulation of Plants for Herbicide Resistance. Sustainable Agriculture Reviews, 153-192. doi:10.1007/978-3-319-09132-7_3
Bagavathiannan, M., Singh, V., Govindasamy, P., Abugho, S. B., & Liu, R. (2017). Impact of Concurrent Weed or Herbicide Stress with Other Biotic and Abiotic Stressors on Crop Production. Plant Tolerance to Individual and Concurrent Stresses, 33-45. doi:10.1007/978-81-322-3706-8_3
[+]
Vos, R., & Bellù, L. G. (2019). Global Trends and Challenges to Food and Agriculture into the 21st Century. Sustainable Food and Agriculture, 11-30. doi:10.1016/b978-0-12-812134-4.00002-9
Vats, S. (2014). Herbicides: History, Classification and Genetic Manipulation of Plants for Herbicide Resistance. Sustainable Agriculture Reviews, 153-192. doi:10.1007/978-3-319-09132-7_3
Bagavathiannan, M., Singh, V., Govindasamy, P., Abugho, S. B., & Liu, R. (2017). Impact of Concurrent Weed or Herbicide Stress with Other Biotic and Abiotic Stressors on Crop Production. Plant Tolerance to Individual and Concurrent Stresses, 33-45. doi:10.1007/978-81-322-3706-8_3
The International Code of Conduct on Pesticide Management. Rome http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/code/en/
Villa, F., Cappitelli, F., Cortesi, P., & Kunova, A. (2017). Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00654
Da Mastro, G., Fracchiolla, M., Verdini, L., & Montemurro, P. (2006). OREGANO AND ITS POTENTIAL USE AS BIOHERBICIDE. Acta Horticulturae, (723), 335-346. doi:10.17660/actahortic.2006.723.46
Seiber, J. N., Coats, J., Duke, S. O., & Gross, A. D. (2014). Biopesticides: State of the Art and Future Opportunities. Journal of Agricultural and Food Chemistry, 62(48), 11613-11619. doi:10.1021/jf504252n
Dahiya, A., Sharma, R., Sindhu, S., & Sindhu, S. S. (2019). Resource partitioning in the rhizosphere by inoculated Bacillus spp. towards growth stimulation of wheat and suppression of wild oat (Avena fatua L.) weed. Physiology and Molecular Biology of Plants, 25(6), 1483-1495. doi:10.1007/s12298-019-00710-3
The International Herbicide-Resistant Weed Database www.weedscience.org
Hazrati, H., Saharkhiz, M. J., Moein, M., & Khoshghalb, H. (2018). Phytotoxic effects of several essential oils on two weed species and Tomato. Biocatalysis and Agricultural Biotechnology, 13, 204-212. doi:10.1016/j.bcab.2017.12.014
Bajwa, A. A., Sadia, S., Ali, H. H., Jabran, K., Peerzada, A. M., & Chauhan, B. S. (2016). Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 23(24), 24694-24710. doi:10.1007/s11356-016-7794-7
Graziani, F., Onofri, A., Pannacci, E., Tei, F., & Guiducci, M. (2012). Size and composition of weed seedbank in long-term organic and conventional low-input cropping systems. European Journal of Agronomy, 39, 52-61. doi:10.1016/j.eja.2012.01.008
Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1). doi:10.1186/s12302-016-0070-0
Salamci, E., Kordali, S., Kotan, R., Cakir, A., & Kaya, Y. (2007). Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliophyllum var. chiliophyllum. Biochemical Systematics and Ecology, 35(9), 569-581. doi:10.1016/j.bse.2007.03.012
Synowiec, A., Kalemba, D., Drozdek, E., & Bocianowski, J. (2016). Phytotoxic potential of essential oils from temperate climate plants against the germination of selected weeds and crops. Journal of Pest Science, 90(1), 407-419. doi:10.1007/s10340-016-0759-2
Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety, 142, 423-430. doi:10.1016/j.ecoenv.2017.04.041
Verdeguer, M., Blázquez, M. A., & Boira, H. (2009). Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus essential oils in weeds of Mediterranean summer crops. Biochemical Systematics and Ecology, 37(4), 362-369. doi:10.1016/j.bse.2009.06.003
Benarab, H., Fenni, M., Louadj, Y., Boukhabti, H., & Ramdani, M. (2020). Allelopathic activity of essential oil extracts from Artemisia herba-alba Asso. on seed and seedling germination of weed and wheat crops. Acta Scientifica Naturalis, 7(1), 86-97. doi:10.2478/asn-2020-0009
Benchaa, S., Hazzit, M., & Abdelkrim, H. (2018). Allelopathic Effect ofEucalyptus citriodoraEssential Oil and Its Potential Use as Bioherbicide. Chemistry & Biodiversity, 15(8), e1800202. doi:10.1002/cbdv.201800202
Verdeguer, M., Castañeda, L. G., Torres-Pagan, N., Llorens-Molina, J. A., & Carrubba, A. (2020). Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules, 25(3), 562. doi:10.3390/molecules25030562
Scavo, A., Pandino, G., Restuccia, A., & Mauromicale, G. (2020). Leaf extracts of cultivated cardoon as potential bioherbicide. Scientia Horticulturae, 261, 109024. doi:10.1016/j.scienta.2019.109024
Ma, S., Fu, L., He, S., Lu, X., Wu, Y., Ma, Z., & Zhang, X. (2018). Potent herbicidal activity of Sapindus mukorossi Gaertn. against Avena fatua L. and Amaranthus retroflexus L. Industrial Crops and Products, 122, 1-6. doi:10.1016/j.indcrop.2018.05.046
Pacanoski, Z., & Mehmeti, A. (2019). Allelopathic effect of Siberian iris (Iris sibirica) on the early growth of wild oat (Avena fatua) and Canada thistle (Cirsium arvense). Journal of Central European Agriculture, 20(4), 1179-1187. doi:10.5513/jcea01/20.4.2047
Bainard, L. D., Isman, M. B., & Upadhyaya, M. K. (2006). Phytotoxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Science, 54(5), 833-837. doi:10.1614/ws-06-039r.1
Ahuja, N., Singh, H. P., Batish, D. R., & Kohli, R. K. (2015). Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage. Pesticide Biochemistry and Physiology, 118, 64-70. doi:10.1016/j.pestbp.2014.11.012
Vaughn, S. F., & Spencer, G. F. (1993). Volatile Monoterpenes as Potential Parent Structures for New Herbicides. Weed Science, 41(1), 114-119. doi:10.1017/s0043174500057672
Verdeguer, M., García-Rellán, D., Boira, H., Pérez, E., Gandolfo, S., & Blázquez, M. A. (2011). Herbicidal Activity of Peumus boldus and Drimys winterii Essential Oils from Chile. Molecules, 16(1), 403-411. doi:10.3390/molecules16010403
Saad, M. M. G., Abdelgaleil, S. A. M., & Suganuma, T. (2012). Herbicidal potential of pseudoguaninolide sesquiterpenes on wild oat, Avena fatua L. Biochemical Systematics and Ecology, 44, 333-337. doi:10.1016/j.bse.2012.06.004
Araniti, F., Sánchez-Moreiras, A. M., Graña, E., Reigosa, M. J., & Abenavoli, M. R. (2016). Terpenoidtrans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adultArabidopsis. Plant Biology, 19(1), 79-89. doi:10.1111/plb.12471
Coleman, R., & Penner, D. (2008). Organic Acid Enhancement of Pelargonic Acid. Weed Technology, 22(1), 38-41. doi:10.1614/wt-06-195.1
Dayan, F. E., & Duke, S. O. (2014). Natural Compounds as Next-Generation Herbicides. PLANT PHYSIOLOGY, 166(3), 1090-1105. doi:10.1104/pp.114.239061
Lebecque, S., Lins, L., Dayan, F. E., Fauconnier, M.-L., & Deleu, M. (2019). Interactions Between Natural Herbicides and Lipid Bilayers Mimicking the Plant Plasma Membrane. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00329
Gruenwald, J., Freder, J., & Armbruester, N. (2010). Cinnamon and Health. Critical Reviews in Food Science and Nutrition, 50(9), 822-834. doi:10.1080/10408390902773052
Viazis, S., Akhtar, M., Feirtag, J., & Diez-Gonzalez, F. (2011). Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiology, 28(1), 149-157. doi:10.1016/j.fm.2010.09.009
Kwon, J. A., Yu, C. B., & Park, H. D. (2003). Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Letters in Applied Microbiology, 37(1), 61-65. doi:10.1046/j.1472-765x.2003.01350.x
Friedman, M. (2017). Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. Journal of Agricultural and Food Chemistry, 65(48), 10406-10423. doi:10.1021/acs.jafc.7b04344
Saad, M. M. G., Gouda, N. A. A., & Abdelgaleil, S. A. M. (2019). Bioherbicidal activity of terpenes and phenylpropenes against Echinochloa crus-galli. Journal of Environmental Science and Health, Part B, 54(12), 954-963. doi:10.1080/03601234.2019.1653121
Roselló, J., Sempere, F., Sanz-Berzosa, I., Chiralt, A., & Santamarina, M. P. (2015). Antifungal Activity and Potential Use of Essential Oils AgainstFusarium culmorumandFusarium verticillioides. Journal of Essential Oil Bearing Plants, 18(2), 359-367. doi:10.1080/0972060x.2015.1010601
Santamarina, M., Ibáñez, M., Marqués, M., Roselló, J., Giménez, S., & Blázquez, M. (2017). Bioactivity of essential oils in phytopathogenic and post-harvest fungi control. Natural Product Research, 31(22), 2675-2679. doi:10.1080/14786419.2017.1286479
Krepker, M., Shemesh, R., Danin Poleg, Y., Kashi, Y., Vaxman, A., & Segal, E. (2017). Active food packaging films with synergistic antimicrobial activity. Food Control, 76, 117-126. doi:10.1016/j.foodcont.2017.01.014
Ye, H., Shen, S., Xu, J., Lin, S., Yuan, Y., & Jones, G. S. (2013). Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria. Food Control, 34(2), 619-623. doi:10.1016/j.foodcont.2013.05.032
WU, H., WALKER, S., ROLLIN, M. J., TAN, D. K. Y., ROBINSON, G., & WERTH, J. (2007). Germination, persistence, and emergence of flaxleaf fleabane (Conyza bonariensis [L.] Cronquist). Weed Biology and Management, 7(3), 192-199. doi:10.1111/j.1445-6664.2007.00256.x
Mithila, J., Swanton, C. J., Blackshaw, R. E., Cathcart, R. J., & Hall, J. C. (2008). Physiological Basis for Reduced Glyphosate Efficacy on Weeds Grown Under Low Soil Nitrogen. Weed Science, 56(1), 12-17. doi:10.1614/ws-07-072.1
SANDBERG, C. L., MEGGITT, W. F., & PENNER, D. (1980). Absorption, translocation and metabolism of 14C-glyphosate in several weed species*. Weed Research, 20(4), 195-200. doi:10.1111/j.1365-3180.1980.tb00068.x
Lederer, B., Fujimori, T., Tsujino, Y., Wakabayashi, K., & Böger, P. (2004). Phytotoxic activity of middle-chain fatty acids II: peroxidation and membrane effects. Pesticide Biochemistry and Physiology, 80(3), 151-156. doi:10.1016/j.pestbp.2004.06.010
Hasanuzzaman, M., Mohsin, S. M., Bhuyan, M. H. M. B., Bhuiyan, T. F., Anee, T. I., Masud, A. A. C., & Nahar, K. (2020). Phytotoxicity, environmental and health hazards of herbicides: challenges and ways forward. Agrochemicals Detection, Treatment and Remediation, 55-99. doi:10.1016/b978-0-08-103017-2.00003-9
[-]