- -

Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication

Show full item record

Riahi, C.; Reig-Valiente, JL.; Picó Sirvent, MB.; Díaz, A.; Gonzalo, MJ.; Monforte Gilabert, AJ. (2020). Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication. Agronomy. 10(8):1-15. https://doi.org/10.3390/agronomy10081064

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167010

Files in this item

Item Metadata

Title: Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication
Author: Riahi, Chaymaa Reig-Valiente, Juan Luis Picó Sirvent, María Belén Díaz, Aurora Gonzalo, María José Monforte Gilabert, Antonio José
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Cultivated melon was domesticated from wild melons, which produce small fruits with non-edible fruit flesh. The increase in fruit flesh is one of the major domestication achievements in this species. In previous work, ...[+]
Subjects: Cucumis melo L. , Epistasis , QTL cloning , Fine mapping , Pericarp
Copyrigths: Reconocimiento (by)
Source:
Agronomy. (eissn: 2073-4395 )
DOI: 10.3390/agronomy10081064
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/agronomy10081064
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85563-C2-1-R/ES/CONTROL MULTIDISCIPLINAR DE ENFERMEDADES FUNGICAS Y VIROSIS EN MELON Y SANDIA: UN NUEVO RETO/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097665-B-C22/ES/BASES GENETICAS DE LA MORFOLOGIA DEL FRUTO EN MELON COMO CONSECUENCIA DE LA DOMESTICACION Y LA DIVERSIFICACION Y CARACTERIZACION DE BARRERAS REPRODUCTIVAS INTERESPECIFICAS EN/
Thanks:
This research was funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades grants AGL2017-85563-C2-1-R and RTI2018-097665-B-C22) (jointly funded by FEDER).
Type: Artículo

References

Gonzalo, M. J., Díaz, A., Dhillon, N. P. S., Reddy, U. K., Picó, B., & Monforte, A. J. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics, 20(1). doi:10.1186/s12864-019-5784-0

Telford, I. R. H., Schaefer, H., Greuter, W., & Renner, S. (2011). A new Australian species of Luffa (Cucurbitaceae) and typification of two Australian Cucumis names, all based on specimens collected by Ferdinand Mueller in 1856. PhytoKeys, 5(0), 21. doi:10.3897/phytokeys.5.1395

Filipowicz, N., Schaefer, H., & Renner, S. S. (2014). Revisiting <I>Luffa</I> (Cucurbitaceae) 25 Years After C. Heiser: Species Boundaries and Application of Names Tested with Plastid and Nuclear DNA Sequences. Systematic Botany, 39(1), 205-215. doi:10.1600/036364414x678215 [+]
Gonzalo, M. J., Díaz, A., Dhillon, N. P. S., Reddy, U. K., Picó, B., & Monforte, A. J. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics, 20(1). doi:10.1186/s12864-019-5784-0

Telford, I. R. H., Schaefer, H., Greuter, W., & Renner, S. (2011). A new Australian species of Luffa (Cucurbitaceae) and typification of two Australian Cucumis names, all based on specimens collected by Ferdinand Mueller in 1856. PhytoKeys, 5(0), 21. doi:10.3897/phytokeys.5.1395

Filipowicz, N., Schaefer, H., & Renner, S. S. (2014). Revisiting <I>Luffa</I> (Cucurbitaceae) 25 Years After C. Heiser: Species Boundaries and Application of Names Tested with Plastid and Nuclear DNA Sequences. Systematic Botany, 39(1), 205-215. doi:10.1600/036364414x678215

Kistler, L., Montenegro, A., Smith, B. D., Gifford, J. A., Green, R. E., Newsom, L. A., & Shapiro, B. (2014). Transoceanic drift and the domestication of African bottle gourds in the Americas. Proceedings of the National Academy of Sciences, 111(8), 2937-2941. doi:10.1073/pnas.1318678111

Sebastian, P., Schaefer, H., Telford, I. R. H., & Renner, S. S. (2010). Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proceedings of the National Academy of Sciences, 107(32), 14269-14273. doi:10.1073/pnas.1005338107

Endl, J., Achigan-Dako, E. G., Pandey, A. K., Monforte, A. J., Pico, B., & Schaefer, H. (2018). Repeated domestication of melon (Cucumis melo ) in Africa and Asia and a new close relative from India. American Journal of Botany, 105(10), 1662-1671. doi:10.1002/ajb2.1172

Esteras, C., Formisano, G., Roig, C., Díaz, A., Blanca, J., Garcia-Mas, J., … Picó, B. (2013). SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 126(5), 1285-1303. doi:10.1007/s00122-013-2053-5

Zhao, G., Lian, Q., Zhang, Z., Fu, Q., He, Y., Ma, S., … Huang, S. (2019). A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 51(11), 1607-1615. doi:10.1038/s41588-019-0522-8

Roy, A., Bal, S. S., Fergany, M., Kaur, S., Singh, H., Malik, A. A., … Dhillon, N. P. S. (2011). Wild melon diversity in India (Punjab State). Genetic Resources and Crop Evolution, 59(5), 755-767. doi:10.1007/s10722-011-9716-3

Díaz, A., Martín-Hernández, A. M., Dolcet-Sanjuan, R., Garcés-Claver, A., Álvarez, J. M., Garcia-Mas, J., … Monforte, A. J. (2017). Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theoretical and Applied Genetics, 130(9), 1837-1856. doi:10.1007/s00122-017-2928-y

Garcia-Mas, J., Monforte, A. J., & Ar�s, P. (2004). Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers. Plant Systematics and Evolution, 248(1-4). doi:10.1007/s00606-004-0170-y

Studer, A., Zhao, Q., Ross-Ibarra, J., & Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 43(11), 1160-1163. doi:10.1038/ng.942

Li, C., Zhou, A., & Sang, T. (2006). Rice Domestication by Reducing Shattering. Science, 311(5769), 1936-1939. doi:10.1126/science.1123604

Frary, A., Nesbitt, T. C., Frary, A., Grandillo, S., Knaap, E. van der, Cong, B., … Tanksley, S. D. (2000). fw2.2  : A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85

Sanseverino, W., Hénaff, E., Vives, C., Pinosio, S., Burgos-Paz, W., Morgante, M., … Casacuberta, J. M. (2015). Transposon Insertions, Structural Variations, and SNPs Contribute to the Evolution of the Melon Genome. Molecular Biology and Evolution, 32(10), 2760-2774. doi:10.1093/molbev/msv152

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. doi:10.1371/journal.pone.0019379

Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109

Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology, 141(1), 15-25. doi:10.1104/pp.106.077867

Lander, E. S., & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121(1), 185-199. doi:10.1093/genetics/121.1.185

KOSAMBI, D. D. (1943). THE ESTIMATION OF MAP DISTANCES FROM RECOMBINATION VALUES. Annals of Eugenics, 12(1), 172-175. doi:10.1111/j.1469-1809.1943.tb02321.x

Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136(4), 1457-1468. doi:10.1093/genetics/136.4.1457

Windows QTL Cartographer V2.5_011http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

Argyris, J. M., Pujol, M., Martín-Hernández, A. M., & Garcia-Mas, J. (2015). Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiologia Plantarum, 155(1), 4-11. doi:10.1111/ppl.12323

Sun, S., Wang, X., Wang, K., & Cui, X. (2019). Dissection of complex traits of tomato in the post-genome era. Theoretical and Applied Genetics, 133(5), 1763-1776. doi:10.1007/s00122-019-03478-y

Fisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. doi:10.1017/s0080456800012163

Causse, M., Chaïb, J., Lecomte, L., Buret, M., & Hospital, F. (2007). Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theoretical and Applied Genetics, 115(3), 429-442. doi:10.1007/s00122-007-0578-1

Würschum, T., Maurer, H. P., Schulz, B., Möhring, J., & Reif, J. C. (2011). Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theoretical and Applied Genetics, 123(1), 109-118. doi:10.1007/s00122-011-1570-3

Sáez, C., Esteras, C., Martínez, C., Ferriol, M., Dhillon, N. P. S., López, C., & Picó, B. (2017). Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Reports, 36(10), 1571-1584. doi:10.1007/s00299-017-2175-3

Díaz, A., Zarouri, B., Fergany, M., Eduardo, I., Álvarez, J. M., Picó, B., & Monforte, A. J. (2014). Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.). PLoS ONE, 9(8), e104188. doi:10.1371/journal.pone.0104188

Wallace, J. G., Larsson, S. J., & Buckler, E. S. (2013). Entering the second century of maize quantitative genetics. Heredity, 112(1), 30-38. doi:10.1038/hdy.2013.6

Stitzer, M. C., & Ross‐Ibarra, J. (2018). Maize domestication and gene interaction. New Phytologist, 220(2), 395-408. doi:10.1111/nph.15350

Studer, A. J., & Doebley, J. F. (2011). Do Large Effect QTL Fractionate? A Case Study at the Maize Domestication QTL teosinte branched1. Genetics, 188(3), 673-681. doi:10.1534/genetics.111.126508

Mu, Q., Huang, Z., Chakrabarti, M., Illa-Berenguer, E., Liu, X., Wang, Y., … van der Knaap, E. (2017). Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLOS Genetics, 13(8), e1006930. doi:10.1371/journal.pgen.1006930

Czerednik, A., Busscher, M., Bielen, B. A. M., Wolters-Arts, M., de Maagd, R. A., & Angenent, G. C. (2012). Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes. Journal of Experimental Botany, 63(7), 2605-2617. doi:10.1093/jxb/err451

Doebley, J., Stec, A., & Gustus, C. (1995). teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 141(1), 333-346. doi:10.1093/genetics/141.1.333

Von Korff, M., Léon, J., & Pillen, K. (2010). Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theoretical and Applied Genetics, 121(8), 1455-1464. doi:10.1007/s00122-010-1401-y

Azhaguvel, P., Vidya-Saraswathi, D., & Komatsuda, T. (2006). High-resolution linkage mapping for the non-brittle rachis locus btr1 in cultivated × wild barley (Hordeum vulgare). Plant Science, 170(6), 1087-1094. doi:10.1016/j.plantsci.2006.01.013

Sakuma, S., Salomon, B., & Komatsuda, T. (2011). The Domestication Syndrome Genes Responsible for the Major Changes in Plant Form in the Triticeae Crops. Plant and Cell Physiology, 52(5), 738-749. doi:10.1093/pcp/pcr025

Monforte, A. J., Friedman, E., Zamir, D., & Tanksley, S. D. (2001). Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theoretical and Applied Genetics, 102(4), 572-590. doi:10.1007/s001220051684

Gur, A., & Zamir, D. (2004). Unused Natural Variation Can Lift Yield Barriers in Plant Breeding. PLoS Biology, 2(10), e245. doi:10.1371/journal.pbio.0020245

Kovach, M., & McCouch, S. (2008). Leveraging natural diversity: back through the bottleneck. Current Opinion in Plant Biology, 11(2), 193-200. doi:10.1016/j.pbi.2007.12.006

Doust, A. N., Lukens, L., Olsen, K. M., Mauro-Herrera, M., Meyer, A., & Rogers, K. (2014). Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proceedings of the National Academy of Sciences, 111(17), 6178-6183. doi:10.1073/pnas.1308940110

[-]

recommendations

 

recommendations

 

This item appears in the following Collection(s)

Show full item record