Mostrar el registro sencillo del ítem
dc.contributor.author | Riahi, Chaymaa | es_ES |
dc.contributor.author | Reig-Valiente, Juan Luis | es_ES |
dc.contributor.author | Picó Sirvent, María Belén | es_ES |
dc.contributor.author | Díaz, Aurora | es_ES |
dc.contributor.author | Gonzalo, María José | es_ES |
dc.contributor.author | Monforte Gilabert, Antonio José | es_ES |
dc.date.accessioned | 2021-06-01T03:32:23Z | |
dc.date.available | 2021-06-01T03:32:23Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167010 | |
dc.description.abstract | [EN] Cultivated melon was domesticated from wild melons, which produce small fruits with non-edible fruit flesh. The increase in fruit flesh is one of the major domestication achievements in this species. In previous work, a quantitative trait locus (QTL) on chromosome 6 (paqt6.1) linked to fruit flesh content was detected in a cross between cultivated ("Piel de Sapo", PS) and wild (Ames 24294, TRI) accessions. The QTL was introgressed into the PS background, generating the TRI_6-3 introgression line (IL) that confirmed the effects ofpaqt6.1. The primary objective of this work was to fine-mappaqt6.1as the first step for the map-based cloning. Two different approaches were carried out; however, the results were not consistent, precluding the fine mapping ofpaqt6.1. TRI_6-3 and other related ILs were genotyped by genotyping-by-sequencing, finding additional introgressions in other chromosomes. In an F(2)population from TRI_6-3-x-PS, we found an epistatic interaction betweenpaqt6.1and another locus on chromosome 11. The interaction was verified in advanced populations, suggesting that the effects ofpaqt6.1are conditioned by the allelic composition at another locus in chromosome 11. Both loci should have TRI alleles to reduce the flesh content in the PS background. The implications on the history of melon domestication are discussed. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades grants AGL2017-85563-C2-1-R and RTI2018-097665-B-C22) (jointly funded by FEDER). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cucumis melo L. | es_ES |
dc.subject | Epistasis | es_ES |
dc.subject | QTL cloning | es_ES |
dc.subject | Fine mapping | es_ES |
dc.subject | Pericarp | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy10081064 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85563-C2-1-R/ES/CONTROL MULTIDISCIPLINAR DE ENFERMEDADES FUNGICAS Y VIROSIS EN MELON Y SANDIA: UN NUEVO RETO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097665-B-C22/ES/BASES GENETICAS DE LA MORFOLOGIA DEL FRUTO EN MELON COMO CONSECUENCIA DE LA DOMESTICACION Y LA DIVERSIFICACION Y CARACTERIZACION DE BARRERAS REPRODUCTIVAS INTERESPECIFICAS EN/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Riahi, C.; Reig-Valiente, JL.; Picó Sirvent, MB.; Díaz, A.; Gonzalo, MJ.; Monforte Gilabert, AJ. (2020). Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication. Agronomy. 10(8):1-15. https://doi.org/10.3390/agronomy10081064 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy10081064 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\419906 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Gonzalo, M. J., Díaz, A., Dhillon, N. P. S., Reddy, U. K., Picó, B., & Monforte, A. J. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics, 20(1). doi:10.1186/s12864-019-5784-0 | es_ES |
dc.description.references | Telford, I. R. H., Schaefer, H., Greuter, W., & Renner, S. (2011). A new Australian species of Luffa (Cucurbitaceae) and typification of two Australian Cucumis names, all based on specimens collected by Ferdinand Mueller in 1856. PhytoKeys, 5(0), 21. doi:10.3897/phytokeys.5.1395 | es_ES |
dc.description.references | Filipowicz, N., Schaefer, H., & Renner, S. S. (2014). Revisiting <I>Luffa</I> (Cucurbitaceae) 25 Years After C. Heiser: Species Boundaries and Application of Names Tested with Plastid and Nuclear DNA Sequences. Systematic Botany, 39(1), 205-215. doi:10.1600/036364414x678215 | es_ES |
dc.description.references | Kistler, L., Montenegro, A., Smith, B. D., Gifford, J. A., Green, R. E., Newsom, L. A., & Shapiro, B. (2014). Transoceanic drift and the domestication of African bottle gourds in the Americas. Proceedings of the National Academy of Sciences, 111(8), 2937-2941. doi:10.1073/pnas.1318678111 | es_ES |
dc.description.references | Sebastian, P., Schaefer, H., Telford, I. R. H., & Renner, S. S. (2010). Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proceedings of the National Academy of Sciences, 107(32), 14269-14273. doi:10.1073/pnas.1005338107 | es_ES |
dc.description.references | Endl, J., Achigan-Dako, E. G., Pandey, A. K., Monforte, A. J., Pico, B., & Schaefer, H. (2018). Repeated domestication of melon (Cucumis melo ) in Africa and Asia and a new close relative from India. American Journal of Botany, 105(10), 1662-1671. doi:10.1002/ajb2.1172 | es_ES |
dc.description.references | Esteras, C., Formisano, G., Roig, C., Díaz, A., Blanca, J., Garcia-Mas, J., … Picó, B. (2013). SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 126(5), 1285-1303. doi:10.1007/s00122-013-2053-5 | es_ES |
dc.description.references | Zhao, G., Lian, Q., Zhang, Z., Fu, Q., He, Y., Ma, S., … Huang, S. (2019). A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 51(11), 1607-1615. doi:10.1038/s41588-019-0522-8 | es_ES |
dc.description.references | Roy, A., Bal, S. S., Fergany, M., Kaur, S., Singh, H., Malik, A. A., … Dhillon, N. P. S. (2011). Wild melon diversity in India (Punjab State). Genetic Resources and Crop Evolution, 59(5), 755-767. doi:10.1007/s10722-011-9716-3 | es_ES |
dc.description.references | Díaz, A., Martín-Hernández, A. M., Dolcet-Sanjuan, R., Garcés-Claver, A., Álvarez, J. M., Garcia-Mas, J., … Monforte, A. J. (2017). Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theoretical and Applied Genetics, 130(9), 1837-1856. doi:10.1007/s00122-017-2928-y | es_ES |
dc.description.references | Garcia-Mas, J., Monforte, A. J., & Ar�s, P. (2004). Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers. Plant Systematics and Evolution, 248(1-4). doi:10.1007/s00606-004-0170-y | es_ES |
dc.description.references | Studer, A., Zhao, Q., Ross-Ibarra, J., & Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 43(11), 1160-1163. doi:10.1038/ng.942 | es_ES |
dc.description.references | Li, C., Zhou, A., & Sang, T. (2006). Rice Domestication by Reducing Shattering. Science, 311(5769), 1936-1939. doi:10.1126/science.1123604 | es_ES |
dc.description.references | Frary, A., Nesbitt, T. C., Frary, A., Grandillo, S., Knaap, E. van der, Cong, B., … Tanksley, S. D. (2000). fw2.2 : A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85 | es_ES |
dc.description.references | Sanseverino, W., Hénaff, E., Vives, C., Pinosio, S., Burgos-Paz, W., Morgante, M., … Casacuberta, J. M. (2015). Transposon Insertions, Structural Variations, and SNPs Contribute to the Evolution of the Melon Genome. Molecular Biology and Evolution, 32(10), 2760-2774. doi:10.1093/molbev/msv152 | es_ES |
dc.description.references | Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. doi:10.1371/journal.pone.0019379 | es_ES |
dc.description.references | Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109 | es_ES |
dc.description.references | Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology, 141(1), 15-25. doi:10.1104/pp.106.077867 | es_ES |
dc.description.references | Lander, E. S., & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121(1), 185-199. doi:10.1093/genetics/121.1.185 | es_ES |
dc.description.references | KOSAMBI, D. D. (1943). THE ESTIMATION OF MAP DISTANCES FROM RECOMBINATION VALUES. Annals of Eugenics, 12(1), 172-175. doi:10.1111/j.1469-1809.1943.tb02321.x | es_ES |
dc.description.references | Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136(4), 1457-1468. doi:10.1093/genetics/136.4.1457 | es_ES |
dc.description.references | Windows QTL Cartographer V2.5_011http://statgen.ncsu.edu/qtlcart/WQTLCart.htm | es_ES |
dc.description.references | Argyris, J. M., Pujol, M., Martín-Hernández, A. M., & Garcia-Mas, J. (2015). Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiologia Plantarum, 155(1), 4-11. doi:10.1111/ppl.12323 | es_ES |
dc.description.references | Sun, S., Wang, X., Wang, K., & Cui, X. (2019). Dissection of complex traits of tomato in the post-genome era. Theoretical and Applied Genetics, 133(5), 1763-1776. doi:10.1007/s00122-019-03478-y | es_ES |
dc.description.references | Fisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. doi:10.1017/s0080456800012163 | es_ES |
dc.description.references | Causse, M., Chaïb, J., Lecomte, L., Buret, M., & Hospital, F. (2007). Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theoretical and Applied Genetics, 115(3), 429-442. doi:10.1007/s00122-007-0578-1 | es_ES |
dc.description.references | Würschum, T., Maurer, H. P., Schulz, B., Möhring, J., & Reif, J. C. (2011). Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theoretical and Applied Genetics, 123(1), 109-118. doi:10.1007/s00122-011-1570-3 | es_ES |
dc.description.references | Sáez, C., Esteras, C., Martínez, C., Ferriol, M., Dhillon, N. P. S., López, C., & Picó, B. (2017). Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Reports, 36(10), 1571-1584. doi:10.1007/s00299-017-2175-3 | es_ES |
dc.description.references | Díaz, A., Zarouri, B., Fergany, M., Eduardo, I., Álvarez, J. M., Picó, B., & Monforte, A. J. (2014). Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.). PLoS ONE, 9(8), e104188. doi:10.1371/journal.pone.0104188 | es_ES |
dc.description.references | Wallace, J. G., Larsson, S. J., & Buckler, E. S. (2013). Entering the second century of maize quantitative genetics. Heredity, 112(1), 30-38. doi:10.1038/hdy.2013.6 | es_ES |
dc.description.references | Stitzer, M. C., & Ross‐Ibarra, J. (2018). Maize domestication and gene interaction. New Phytologist, 220(2), 395-408. doi:10.1111/nph.15350 | es_ES |
dc.description.references | Studer, A. J., & Doebley, J. F. (2011). Do Large Effect QTL Fractionate? A Case Study at the Maize Domestication QTL teosinte branched1. Genetics, 188(3), 673-681. doi:10.1534/genetics.111.126508 | es_ES |
dc.description.references | Mu, Q., Huang, Z., Chakrabarti, M., Illa-Berenguer, E., Liu, X., Wang, Y., … van der Knaap, E. (2017). Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLOS Genetics, 13(8), e1006930. doi:10.1371/journal.pgen.1006930 | es_ES |
dc.description.references | Czerednik, A., Busscher, M., Bielen, B. A. M., Wolters-Arts, M., de Maagd, R. A., & Angenent, G. C. (2012). Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes. Journal of Experimental Botany, 63(7), 2605-2617. doi:10.1093/jxb/err451 | es_ES |
dc.description.references | Doebley, J., Stec, A., & Gustus, C. (1995). teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 141(1), 333-346. doi:10.1093/genetics/141.1.333 | es_ES |
dc.description.references | Von Korff, M., Léon, J., & Pillen, K. (2010). Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theoretical and Applied Genetics, 121(8), 1455-1464. doi:10.1007/s00122-010-1401-y | es_ES |
dc.description.references | Azhaguvel, P., Vidya-Saraswathi, D., & Komatsuda, T. (2006). High-resolution linkage mapping for the non-brittle rachis locus btr1 in cultivated × wild barley (Hordeum vulgare). Plant Science, 170(6), 1087-1094. doi:10.1016/j.plantsci.2006.01.013 | es_ES |
dc.description.references | Sakuma, S., Salomon, B., & Komatsuda, T. (2011). The Domestication Syndrome Genes Responsible for the Major Changes in Plant Form in the Triticeae Crops. Plant and Cell Physiology, 52(5), 738-749. doi:10.1093/pcp/pcr025 | es_ES |
dc.description.references | Monforte, A. J., Friedman, E., Zamir, D., & Tanksley, S. D. (2001). Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theoretical and Applied Genetics, 102(4), 572-590. doi:10.1007/s001220051684 | es_ES |
dc.description.references | Gur, A., & Zamir, D. (2004). Unused Natural Variation Can Lift Yield Barriers in Plant Breeding. PLoS Biology, 2(10), e245. doi:10.1371/journal.pbio.0020245 | es_ES |
dc.description.references | Kovach, M., & McCouch, S. (2008). Leveraging natural diversity: back through the bottleneck. Current Opinion in Plant Biology, 11(2), 193-200. doi:10.1016/j.pbi.2007.12.006 | es_ES |
dc.description.references | Doust, A. N., Lukens, L., Olsen, K. M., Mauro-Herrera, M., Meyer, A., & Rogers, K. (2014). Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proceedings of the National Academy of Sciences, 111(17), 6178-6183. doi:10.1073/pnas.1308940110 | es_ES |