- -

Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Riahi, Chaymaa es_ES
dc.contributor.author Reig-Valiente, Juan Luis es_ES
dc.contributor.author Picó Sirvent, María Belén es_ES
dc.contributor.author Díaz, Aurora es_ES
dc.contributor.author Gonzalo, María José es_ES
dc.contributor.author Monforte Gilabert, Antonio José es_ES
dc.date.accessioned 2021-06-01T03:32:23Z
dc.date.available 2021-06-01T03:32:23Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167010
dc.description.abstract [EN] Cultivated melon was domesticated from wild melons, which produce small fruits with non-edible fruit flesh. The increase in fruit flesh is one of the major domestication achievements in this species. In previous work, a quantitative trait locus (QTL) on chromosome 6 (paqt6.1) linked to fruit flesh content was detected in a cross between cultivated ("Piel de Sapo", PS) and wild (Ames 24294, TRI) accessions. The QTL was introgressed into the PS background, generating the TRI_6-3 introgression line (IL) that confirmed the effects ofpaqt6.1. The primary objective of this work was to fine-mappaqt6.1as the first step for the map-based cloning. Two different approaches were carried out; however, the results were not consistent, precluding the fine mapping ofpaqt6.1. TRI_6-3 and other related ILs were genotyped by genotyping-by-sequencing, finding additional introgressions in other chromosomes. In an F(2)population from TRI_6-3-x-PS, we found an epistatic interaction betweenpaqt6.1and another locus on chromosome 11. The interaction was verified in advanced populations, suggesting that the effects ofpaqt6.1are conditioned by the allelic composition at another locus in chromosome 11. Both loci should have TRI alleles to reduce the flesh content in the PS background. The implications on the history of melon domestication are discussed. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades grants AGL2017-85563-C2-1-R and RTI2018-097665-B-C22) (jointly funded by FEDER). es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Agronomy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cucumis melo L. es_ES
dc.subject Epistasis es_ES
dc.subject QTL cloning es_ES
dc.subject Fine mapping es_ES
dc.subject Pericarp es_ES
dc.subject.classification GENETICA es_ES
dc.title Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/agronomy10081064 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85563-C2-1-R/ES/CONTROL MULTIDISCIPLINAR DE ENFERMEDADES FUNGICAS Y VIROSIS EN MELON Y SANDIA: UN NUEVO RETO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097665-B-C22/ES/BASES GENETICAS DE LA MORFOLOGIA DEL FRUTO EN MELON COMO CONSECUENCIA DE LA DOMESTICACION Y LA DIVERSIFICACION Y CARACTERIZACION DE BARRERAS REPRODUCTIVAS INTERESPECIFICAS EN/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Riahi, C.; Reig-Valiente, JL.; Picó Sirvent, MB.; Díaz, A.; Gonzalo, MJ.; Monforte Gilabert, AJ. (2020). Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication. Agronomy. 10(8):1-15. https://doi.org/10.3390/agronomy10081064 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/agronomy10081064 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2073-4395 es_ES
dc.relation.pasarela S\419906 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Gonzalo, M. J., Díaz, A., Dhillon, N. P. S., Reddy, U. K., Picó, B., & Monforte, A. J. (2019). Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics, 20(1). doi:10.1186/s12864-019-5784-0 es_ES
dc.description.references Telford, I. R. H., Schaefer, H., Greuter, W., & Renner, S. (2011). A new Australian species of Luffa (Cucurbitaceae) and typification of two Australian Cucumis names, all based on specimens collected by Ferdinand Mueller in 1856. PhytoKeys, 5(0), 21. doi:10.3897/phytokeys.5.1395 es_ES
dc.description.references Filipowicz, N., Schaefer, H., & Renner, S. S. (2014). Revisiting <I>Luffa</I> (Cucurbitaceae) 25 Years After C. Heiser: Species Boundaries and Application of Names Tested with Plastid and Nuclear DNA Sequences. Systematic Botany, 39(1), 205-215. doi:10.1600/036364414x678215 es_ES
dc.description.references Kistler, L., Montenegro, A., Smith, B. D., Gifford, J. A., Green, R. E., Newsom, L. A., & Shapiro, B. (2014). Transoceanic drift and the domestication of African bottle gourds in the Americas. Proceedings of the National Academy of Sciences, 111(8), 2937-2941. doi:10.1073/pnas.1318678111 es_ES
dc.description.references Sebastian, P., Schaefer, H., Telford, I. R. H., & Renner, S. S. (2010). Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proceedings of the National Academy of Sciences, 107(32), 14269-14273. doi:10.1073/pnas.1005338107 es_ES
dc.description.references Endl, J., Achigan-Dako, E. G., Pandey, A. K., Monforte, A. J., Pico, B., & Schaefer, H. (2018). Repeated domestication of melon (Cucumis melo ) in Africa and Asia and a new close relative from India. American Journal of Botany, 105(10), 1662-1671. doi:10.1002/ajb2.1172 es_ES
dc.description.references Esteras, C., Formisano, G., Roig, C., Díaz, A., Blanca, J., Garcia-Mas, J., … Picó, B. (2013). SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 126(5), 1285-1303. doi:10.1007/s00122-013-2053-5 es_ES
dc.description.references Zhao, G., Lian, Q., Zhang, Z., Fu, Q., He, Y., Ma, S., … Huang, S. (2019). A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 51(11), 1607-1615. doi:10.1038/s41588-019-0522-8 es_ES
dc.description.references Roy, A., Bal, S. S., Fergany, M., Kaur, S., Singh, H., Malik, A. A., … Dhillon, N. P. S. (2011). Wild melon diversity in India (Punjab State). Genetic Resources and Crop Evolution, 59(5), 755-767. doi:10.1007/s10722-011-9716-3 es_ES
dc.description.references Díaz, A., Martín-Hernández, A. M., Dolcet-Sanjuan, R., Garcés-Claver, A., Álvarez, J. M., Garcia-Mas, J., … Monforte, A. J. (2017). Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theoretical and Applied Genetics, 130(9), 1837-1856. doi:10.1007/s00122-017-2928-y es_ES
dc.description.references Garcia-Mas, J., Monforte, A. J., & Ar�s, P. (2004). Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers. Plant Systematics and Evolution, 248(1-4). doi:10.1007/s00606-004-0170-y es_ES
dc.description.references Studer, A., Zhao, Q., Ross-Ibarra, J., & Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 43(11), 1160-1163. doi:10.1038/ng.942 es_ES
dc.description.references Li, C., Zhou, A., & Sang, T. (2006). Rice Domestication by Reducing Shattering. Science, 311(5769), 1936-1939. doi:10.1126/science.1123604 es_ES
dc.description.references Frary, A., Nesbitt, T. C., Frary, A., Grandillo, S., Knaap, E. van der, Cong, B., … Tanksley, S. D. (2000). fw2.2  : A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85 es_ES
dc.description.references Sanseverino, W., Hénaff, E., Vives, C., Pinosio, S., Burgos-Paz, W., Morgante, M., … Casacuberta, J. M. (2015). Transposon Insertions, Structural Variations, and SNPs Contribute to the Evolution of the Melon Genome. Molecular Biology and Evolution, 32(10), 2760-2774. doi:10.1093/molbev/msv152 es_ES
dc.description.references Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. doi:10.1371/journal.pone.0019379 es_ES
dc.description.references Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109 es_ES
dc.description.references Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology, 141(1), 15-25. doi:10.1104/pp.106.077867 es_ES
dc.description.references Lander, E. S., & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121(1), 185-199. doi:10.1093/genetics/121.1.185 es_ES
dc.description.references KOSAMBI, D. D. (1943). THE ESTIMATION OF MAP DISTANCES FROM RECOMBINATION VALUES. Annals of Eugenics, 12(1), 172-175. doi:10.1111/j.1469-1809.1943.tb02321.x es_ES
dc.description.references Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136(4), 1457-1468. doi:10.1093/genetics/136.4.1457 es_ES
dc.description.references Windows QTL Cartographer V2.5_011http://statgen.ncsu.edu/qtlcart/WQTLCart.htm es_ES
dc.description.references Argyris, J. M., Pujol, M., Martín-Hernández, A. M., & Garcia-Mas, J. (2015). Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiologia Plantarum, 155(1), 4-11. doi:10.1111/ppl.12323 es_ES
dc.description.references Sun, S., Wang, X., Wang, K., & Cui, X. (2019). Dissection of complex traits of tomato in the post-genome era. Theoretical and Applied Genetics, 133(5), 1763-1776. doi:10.1007/s00122-019-03478-y es_ES
dc.description.references Fisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. doi:10.1017/s0080456800012163 es_ES
dc.description.references Causse, M., Chaïb, J., Lecomte, L., Buret, M., & Hospital, F. (2007). Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theoretical and Applied Genetics, 115(3), 429-442. doi:10.1007/s00122-007-0578-1 es_ES
dc.description.references Würschum, T., Maurer, H. P., Schulz, B., Möhring, J., & Reif, J. C. (2011). Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theoretical and Applied Genetics, 123(1), 109-118. doi:10.1007/s00122-011-1570-3 es_ES
dc.description.references Sáez, C., Esteras, C., Martínez, C., Ferriol, M., Dhillon, N. P. S., López, C., & Picó, B. (2017). Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Reports, 36(10), 1571-1584. doi:10.1007/s00299-017-2175-3 es_ES
dc.description.references Díaz, A., Zarouri, B., Fergany, M., Eduardo, I., Álvarez, J. M., Picó, B., & Monforte, A. J. (2014). Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.). PLoS ONE, 9(8), e104188. doi:10.1371/journal.pone.0104188 es_ES
dc.description.references Wallace, J. G., Larsson, S. J., & Buckler, E. S. (2013). Entering the second century of maize quantitative genetics. Heredity, 112(1), 30-38. doi:10.1038/hdy.2013.6 es_ES
dc.description.references Stitzer, M. C., & Ross‐Ibarra, J. (2018). Maize domestication and gene interaction. New Phytologist, 220(2), 395-408. doi:10.1111/nph.15350 es_ES
dc.description.references Studer, A. J., & Doebley, J. F. (2011). Do Large Effect QTL Fractionate? A Case Study at the Maize Domestication QTL teosinte branched1. Genetics, 188(3), 673-681. doi:10.1534/genetics.111.126508 es_ES
dc.description.references Mu, Q., Huang, Z., Chakrabarti, M., Illa-Berenguer, E., Liu, X., Wang, Y., … van der Knaap, E. (2017). Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLOS Genetics, 13(8), e1006930. doi:10.1371/journal.pgen.1006930 es_ES
dc.description.references Czerednik, A., Busscher, M., Bielen, B. A. M., Wolters-Arts, M., de Maagd, R. A., & Angenent, G. C. (2012). Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes. Journal of Experimental Botany, 63(7), 2605-2617. doi:10.1093/jxb/err451 es_ES
dc.description.references Doebley, J., Stec, A., & Gustus, C. (1995). teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 141(1), 333-346. doi:10.1093/genetics/141.1.333 es_ES
dc.description.references Von Korff, M., Léon, J., & Pillen, K. (2010). Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theoretical and Applied Genetics, 121(8), 1455-1464. doi:10.1007/s00122-010-1401-y es_ES
dc.description.references Azhaguvel, P., Vidya-Saraswathi, D., & Komatsuda, T. (2006). High-resolution linkage mapping for the non-brittle rachis locus btr1 in cultivated × wild barley (Hordeum vulgare). Plant Science, 170(6), 1087-1094. doi:10.1016/j.plantsci.2006.01.013 es_ES
dc.description.references Sakuma, S., Salomon, B., & Komatsuda, T. (2011). The Domestication Syndrome Genes Responsible for the Major Changes in Plant Form in the Triticeae Crops. Plant and Cell Physiology, 52(5), 738-749. doi:10.1093/pcp/pcr025 es_ES
dc.description.references Monforte, A. J., Friedman, E., Zamir, D., & Tanksley, S. D. (2001). Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theoretical and Applied Genetics, 102(4), 572-590. doi:10.1007/s001220051684 es_ES
dc.description.references Gur, A., & Zamir, D. (2004). Unused Natural Variation Can Lift Yield Barriers in Plant Breeding. PLoS Biology, 2(10), e245. doi:10.1371/journal.pbio.0020245 es_ES
dc.description.references Kovach, M., & McCouch, S. (2008). Leveraging natural diversity: back through the bottleneck. Current Opinion in Plant Biology, 11(2), 193-200. doi:10.1016/j.pbi.2007.12.006 es_ES
dc.description.references Doust, A. N., Lukens, L., Olsen, K. M., Mauro-Herrera, M., Meyer, A., & Rogers, K. (2014). Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proceedings of the National Academy of Sciences, 111(17), 6178-6183. doi:10.1073/pnas.1308940110 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem