- -

Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability

Mostrar el registro completo del ítem

Ortiz-Barajas, DL.; Arévalo-Prada, JA.; Fenollar, O.; Rueda-Ordóñez, YJ.; Torres Giner, S. (2020). Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability. Applied Sciences. 10(18):1-17. https://doi.org/10.3390/app10186468

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167195

Ficheros en el ítem

Metadatos del ítem

Título: Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability
Autor: Ortiz-Barajas, Diana L. Arévalo-Prada, Johan A. Fenollar, Octavio Rueda-Ordóñez, Yesid J. Torres Giner, Sergio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Coffee husk, a major lignocellulosic waste derived from the coffee industry, was first ground into flour of fine particles of approximately 90 mu m and then torrefied at 250 degrees C to make it more thermally stable ...[+]
Palabras clave: PLA , Coffee husk , Torrefaction , Green composites , Waste valorization , Circular Bioeconomy
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10186468
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app10186468
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097249-B-C21/ES/ENVASE ACTIVO MULTICAPA TERMOCONFORMABLE DE ALTA BARRERA BASADO EN BIOECONOMIA CIRCULAR/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
Agradecimientos:
This research work was funded by the Spanish Ministry of Science and Innovation (MICI), project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R, and by the Industrial University of Santander.
Tipo: Artículo

References

Guillard, V., Gaucel, S., Fornaciari, C., Angellier-Coussy, H., Buche, P., & Gontard, N. (2018). The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Frontiers in Nutrition, 5. doi:10.3389/fnut.2018.00121

Jurgilevich, A., Birge, T., Kentala-Lehtonen, J., Korhonen-Kurki, K., Pietikäinen, J., Saikku, L., & Schösler, H. (2016). Transition towards Circular Economy in the Food System. Sustainability, 8(1), 69. doi:10.3390/su8010069

Ramesh, M. (2019). Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science, 102, 109-166. doi:10.1016/j.pmatsci.2018.12.004 [+]
Guillard, V., Gaucel, S., Fornaciari, C., Angellier-Coussy, H., Buche, P., & Gontard, N. (2018). The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Frontiers in Nutrition, 5. doi:10.3389/fnut.2018.00121

Jurgilevich, A., Birge, T., Kentala-Lehtonen, J., Korhonen-Kurki, K., Pietikäinen, J., Saikku, L., & Schösler, H. (2016). Transition towards Circular Economy in the Food System. Sustainability, 8(1), 69. doi:10.3390/su8010069

Ramesh, M. (2019). Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science, 102, 109-166. doi:10.1016/j.pmatsci.2018.12.004

Agüero, Á., Lascano, D., Garcia-Sanoguera, D., Fenollar, O., & Torres-Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability, 12(2), 652. doi:10.3390/su12020652

Melendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152

Jothibasu, S., Mohanamurugan, S., Vijay, R., Lenin Singaravelu, D., Vinod, A., & Sanjay, M. (2018). Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. Journal of Industrial Textiles, 49(8), 1036-1060. doi:10.1177/1528083718804207

Kumaran, P., Mohanamurugan, S., Madhu, S., Vijay, R., Lenin Singaravelu, D., Vinod, A., … Siengchin, S. (2019). Investigation on thermo-mechanical characteristics of treated/untreated Portunus sanguinolentus shell powder-based jute fabrics reinforced epoxy composites. Journal of Industrial Textiles, 50(4), 427-459. doi:10.1177/1528083719832851

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758

Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588

Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002

Chaitanya, S., & Singh, I. (2016). Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding. Materials and Manufacturing Processes, 32(5), 468-474. doi:10.1080/10426914.2016.1198034

Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00226

Adekomaya, O., Jamiru, T., Sadiku, R., & Huan, Z. (2015). A review on the sustainability of natural fiber in matrix reinforcement – A practical perspective. Journal of Reinforced Plastics and Composites, 35(1), 3-7. doi:10.1177/0731684415611974

Agüero, Á., Garcia-Sanoguera, D., Lascano, D., Rojas-Lema, S., Ivorra-Martinez, J., Fenollar, O., & Torres-Giner, S. (2020). Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers. Polymers, 12(4), 821. doi:10.3390/polym12040821

Lachenmeier, D. W., Teipel, J., Scharinger, A., Kuballa, T., Walch, S. G., Grosch, F., … Schwarz, S. (2020). Fully Automated Identification of Coffee Species and Simultaneous Quantification of Furfuryl Alcohol Using NMR Spectroscopy. Journal of AOAC INTERNATIONAL, 103(2), 306-314. doi:10.1093/jaocint/qsz020

Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45-58. doi:10.1016/j.resconrec.2012.06.005

Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661-672. doi:10.1007/s11947-011-0565-z

Roussos, S., de los Angeles Aquiáhuatl, M., del Refugio Trejo-Hernández, M., Gaime Perraud, I., Favela, E., Ramakrishna, M., … Viniegra-González, G. (1995). Biotechnological management of coffee pulp — isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Applied Microbiology and Biotechnology, 42(5), 756-762. doi:10.1007/bf00171958

Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., … Mechichi, T. (2012). Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere, 88(6), 677-682. doi:10.1016/j.chemosphere.2012.03.053

Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology, 7(12), 3493-3503. doi:10.1007/s11947-014-1349-z

Moustafa, H., Guizani, C., Dupont, C., Martin, V., Jeguirim, M., & Dufresne, A. (2017). Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustainable Chemistry & Engineering, 5(2), 1906-1916. doi:10.1021/acssuschemeng.6b02633

Wang, Z., Dadi Bekele, L., Qiu, Y., Dai, Y., Zhu, S., Sarsaiya, S., & Chen, J. (2019). Preparation and characterization of coffee hull fiber for reinforcing application in thermoplastic composites. Bioengineered, 10(1), 397-408. doi:10.1080/21655979.2019.1661694

García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080

Gouvea, B. M., Torres, C., Franca, A. S., Oliveira, L. S., & Oliveira, E. S. (2009). Feasibility of ethanol production from coffee husks. Biotechnology Letters, 31(9), 1315-1319. doi:10.1007/s10529-009-0023-4

Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F., & Pis, J. J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89(2), 169-175. doi:10.1016/j.fuproc.2007.09.002

Chen, W.-H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847-866. doi:10.1016/j.rser.2014.12.039

Ribeiro, J., Godina, R., Matias, J., & Nunes, L. (2018). Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. Sustainability, 10(7), 2323. doi:10.3390/su10072323

Hamad, K., Kaseem, M., Ayyoob, M., Joo, J., & Deri, F. (2018). Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83-127. doi:10.1016/j.progpolymsci.2018.07.001

Quiles-Carrillo, L., Montanes, N., Pineiro, F., Jorda-Vilaplana, A., & Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. Materials, 11(11), 2138. doi:10.3390/ma11112138

Chen, Y., Geever, L. M., Killion, J. A., Lyons, J. G., Higginbotham, C. L., & Devine, D. M. (2016). Review of Multifarious Applications of Poly (Lactic Acid). Polymer-Plastics Technology and Engineering, 55(10), 1057-1075. doi:10.1080/03602559.2015.1132465

Risyon, N. P., Othman, S. H., Basha, R. K., & Talib, R. A. (2020). Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packaging and Shelf Life, 23, 100450. doi:10.1016/j.fpsl.2019.100450

Cardoso, R. M., Silva, P. R. L., Lima, A. P., Rocha, D. P., Oliveira, T. C., do Prado, T. M., … Muñoz, R. A. A. (2020). 3D-Printed graphene/polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sensors and Actuators B: Chemical, 307, 127621. doi:10.1016/j.snb.2019.127621

Harris, A. M., & Lee, E. C. (2010). Heat and humidity performance of injection molded PLA for durable applications. Journal of Applied Polymer Science, 115(3), 1380-1389. doi:10.1002/app.30815

Kumar, S., Bhatnagar, N., & Ghosh, A. K. (2016). Effect of enantiomeric monomeric unit ratio on thermal and mechanical properties of poly(lactide). Polymer Bulletin, 73(8), 2087-2104. doi:10.1007/s00289-015-1595-x

Rocha, D. B., Souza, A. G., Szostak, M., & Rosa, D. dos S. (2020). Polylactic acid/Lignocellulosic residue composites compatibilized through a starch coating. Polymer Composites, 41(8), 3250-3259. doi:10.1002/pc.25616

Siakeng, R., Jawaid, M., Asim, M., & Siengchin, S. (2020). Accelerated Weathering and Soil Burial Effect on Biodegradability, Colour and Textureof Coir/Pineapple Leaf Fibres/PLA Biocomposites. Polymers, 12(2), 458. doi:10.3390/polym12020458

Rojas-Lema, S., Quiles-Carrillo, L., Garcia-Garcia, D., Melendez-Rodriguez, B., Balart, R., & Torres-Giner, S. (2020). Tailoring the Properties of Thermo-Compressed Polylactide Films for Food Packaging Applications by Individual and Combined Additions of Lactic Acid Oligomer and Halloysite Nanotubes. Molecules, 25(8), 1976. doi:10.3390/molecules25081976

Torres-Giner, S., Martinez-Abad, A., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Controlled Delivery of Gentamicin Antibiotic from Bioactive Electrospun Polylactide-Based Ultrathin Fibers. Advanced Engineering Materials, 14(4), B112-B122. doi:10.1002/adem.201180006

Huang, L., Mu, B., Yi, X., Li, S., & Wang, Q. (2016). Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal of Polymers and the Environment, 26(1), 48-58. doi:10.1007/s10924-016-0917-x

Suaduang, N., Ross, S., Ross, G. M., Pratumshat, S., & Mahasaranon, S. (2019). Effect of spent coffee grounds filler on the physical and mechanical properties of poly(lactic acid) bio-composite films. Materials Today: Proceedings, 17, 2104-2110. doi:10.1016/j.matpr.2019.06.260

Tsuji, H., Kawashima, Y., Takikawa, H., & Tanaka, S. (2007). Poly(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer, 48(14), 4213-4225. doi:10.1016/j.polymer.2007.05.040

Balart, J. F., García-Sanoguera, D., Balart, R., Boronat, T., & Sánchez-Nacher, L. (2016). Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polymer Composites, 39(3), 848-857. doi:10.1002/pc.24007

Wang, L., Qiu, J., Sakai, E., & Wei, X. (2016). The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Composites Part A: Applied Science and Manufacturing, 89, 18-25. doi:10.1016/j.compositesa.2015.12.016

Arbelaiz, A., Txueka, U., Mezo, I., & Orue, A. (2020). Biocomposites Based on Poly(Lactic Acid) Matrix and Reinforced with Lignocellulosic Fibers: The Effect of Fiber Type and Matrix Modification. Journal of Natural Fibers, 1-14. doi:10.1080/15440478.2020.1726247

Johari, A. P., Mohanty, S., Kurmvanshi, S. K., & Nayak, S. K. (2016). Influence of Different Treated Cellulose Fibers on the Mechanical and Thermal Properties of Poly(lactic acid). ACS Sustainable Chemistry & Engineering, 4(3), 1619-1629. doi:10.1021/acssuschemeng.5b01563

Cataldo, V. A., Cavallaro, G., Lazzara, G., Milioto, S., & Parisi, F. (2017). Coffee grounds as filler for pectin: Green composites with competitive performances dependent on the UV irradiation. Carbohydrate Polymers, 170, 198-205. doi:10.1016/j.carbpol.2017.04.092

Arrigo, Jagdale, Bartoli, Tagliaferro, & Malucelli. (2019). Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds. Polymers, 11(8), 1336. doi:10.3390/polym11081336

Cisneros-López, E. O., Pérez-Fonseca, A. A., González-García, Y., Ramírez-Arreola, D. E., González-Núñez, R., Rodrigue, D., & Robledo-Ortíz, J. R. (2017). Polylactic acid-agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Advances in Polymer Technology, 37(7), 2528-2540. doi:10.1002/adv.21928

Sonseca, A., Madani, S., Rodríguez, G., Hevilla, V., Echeverría, C., Fernández-García, M., … López, D. (2019). Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical, Antibacterial, and Degradation Properties. Nanomaterials, 10(1), 22. doi:10.3390/nano10010022

Yaacab, N. D., Ismail, H., & Ting, S. S. (2016). Potential Use of Paddy Straw as Filler in Poly Lactic Acid/Paddy Straw Powder Biocomposite: Thermal and Thermal Properties. Procedia Chemistry, 19, 757-762. doi:10.1016/j.proche.2016.03.081

Cai, H., Ba, Z., Yang, K., Zhang, Q., Zhao, K., & Gu, S. (2017). Pyrolysis characteristics of typical biomass thermoplastic composites. Results in Physics, 7, 3230-3235. doi:10.1016/j.rinp.2017.07.071

De Brito, E. B., Tienne, L. G. P., Cordeiro, S. B., & Marques, M. de F. V. (2020). Development of Polypropylene Composites with Green Coffee Cake Fibers Subjected to Water Vapor Explosion. Waste and Biomass Valorization, 11(12), 6855-6867. doi:10.1007/s12649-019-00929-x

Totaro, G., Sisti, L., Fiorini, M., Lancellotti, I., Andreola, F. N., & Saccani, A. (2019). Formulation of Green Particulate Composites from PLA and PBS Matrix and Wastes Deriving from the Coffee Production. Journal of Polymers and the Environment, 27(7), 1488-1496. doi:10.1007/s10924-019-01447-6

Sarasini, F., Tirillò, J., Zuorro, A., Maffei, G., Lavecchia, R., Puglia, D., … Torre, L. (2018). Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Industrial Crops and Products, 118, 311-320. doi:10.1016/j.indcrop.2018.03.070

Bouzidi, F., Guessoum, M., Fois, M., & Haddaoui, N. (2017). Viscoelastic, thermo-mechanical and environmental properties of composites based on polypropylene/poly(lactic acid) blend and copper modified nanoclay. Journal of Adhesion Science and Technology, 32(5), 496-515. doi:10.1080/01694243.2017.1365422

Kodama, M., & Karino, I. (1986). Effects of polar groups of polymer matrix on reinforcement-matrix interaction in kevlar fiber-reinforced composites. Journal of Applied Polymer Science, 32(5), 5057-5069. doi:10.1002/app.1986.070320525

Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem