- -

Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortiz-Barajas, Diana L. es_ES
dc.contributor.author Arévalo-Prada, Johan A. es_ES
dc.contributor.author Fenollar, Octavio es_ES
dc.contributor.author Rueda-Ordóñez, Yesid J. es_ES
dc.contributor.author Torres Giner, Sergio es_ES
dc.date.accessioned 2021-06-03T03:31:34Z
dc.date.available 2021-06-03T03:31:34Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167195
dc.description.abstract [EN] Coffee husk, a major lignocellulosic waste derived from the coffee industry, was first ground into flour of fine particles of approximately 90 mu m and then torrefied at 250 degrees C to make it more thermally stable and compatible with biopolymers. The resultant torrefied coffee husk flour (TCHF) was thereafter melt-compounded with polylactide (PLA) in contents from 20 to 50 wt% and the extruded green composite pellets were shaped by injection molding into pieces and characterized. Although the incorporation of TCHF reduced the ductility and toughness of PLA, filler contents of 20 wt% successfully yielded pieces with balanced mechanical properties in both tensile and flexural conditions and improved hardness. Contents of up to 30 wt% of TCHF also induced a nucleating effect that favored the formation of crystals of PLA, whereas the thermal degradation of the biopolyester was delayed by more than 7 degrees C. Furthermore, the PLA/TCHF pieces showed higher thermomechanical resistance and their softening point increased up to nearly 60 degrees C. Therefore, highly sustainable pieces were developed through the valorization of large amounts of coffee waste subjected to torrefaction. In the Circular Bioeconomy framework, these novel green composites can be used in the design of compostable rigid packaging and food contact disposables. es_ES
dc.description.sponsorship This research work was funded by the Spanish Ministry of Science and Innovation (MICI), project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R, and by the Industrial University of Santander. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PLA es_ES
dc.subject Coffee husk es_ES
dc.subject Torrefaction es_ES
dc.subject Green composites es_ES
dc.subject Waste valorization es_ES
dc.subject Circular Bioeconomy es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10186468 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097249-B-C21/ES/ENVASE ACTIVO MULTICAPA TERMOCONFORMABLE DE ALTA BARRERA BASADO EN BIOECONOMIA CIRCULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Ortiz-Barajas, DL.; Arévalo-Prada, JA.; Fenollar, O.; Rueda-Ordóñez, YJ.; Torres Giner, S. (2020). Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability. Applied Sciences. 10(18):1-17. https://doi.org/10.3390/app10186468 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10186468 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 18 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\427466 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universidad Industrial de Santander, Colombia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Guillard, V., Gaucel, S., Fornaciari, C., Angellier-Coussy, H., Buche, P., & Gontard, N. (2018). The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Frontiers in Nutrition, 5. doi:10.3389/fnut.2018.00121 es_ES
dc.description.references Jurgilevich, A., Birge, T., Kentala-Lehtonen, J., Korhonen-Kurki, K., Pietikäinen, J., Saikku, L., & Schösler, H. (2016). Transition towards Circular Economy in the Food System. Sustainability, 8(1), 69. doi:10.3390/su8010069 es_ES
dc.description.references Ramesh, M. (2019). Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science, 102, 109-166. doi:10.1016/j.pmatsci.2018.12.004 es_ES
dc.description.references Agüero, Á., Lascano, D., Garcia-Sanoguera, D., Fenollar, O., & Torres-Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability, 12(2), 652. doi:10.3390/su12020652 es_ES
dc.description.references Melendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152 es_ES
dc.description.references Jothibasu, S., Mohanamurugan, S., Vijay, R., Lenin Singaravelu, D., Vinod, A., & Sanjay, M. (2018). Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. Journal of Industrial Textiles, 49(8), 1036-1060. doi:10.1177/1528083718804207 es_ES
dc.description.references Kumaran, P., Mohanamurugan, S., Madhu, S., Vijay, R., Lenin Singaravelu, D., Vinod, A., … Siengchin, S. (2019). Investigation on thermo-mechanical characteristics of treated/untreated Portunus sanguinolentus shell powder-based jute fabrics reinforced epoxy composites. Journal of Industrial Textiles, 50(4), 427-459. doi:10.1177/1528083719832851 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 es_ES
dc.description.references Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588 es_ES
dc.description.references Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002 es_ES
dc.description.references Chaitanya, S., & Singh, I. (2016). Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding. Materials and Manufacturing Processes, 32(5), 468-474. doi:10.1080/10426914.2016.1198034 es_ES
dc.description.references Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00226 es_ES
dc.description.references Adekomaya, O., Jamiru, T., Sadiku, R., & Huan, Z. (2015). A review on the sustainability of natural fiber in matrix reinforcement – A practical perspective. Journal of Reinforced Plastics and Composites, 35(1), 3-7. doi:10.1177/0731684415611974 es_ES
dc.description.references Agüero, Á., Garcia-Sanoguera, D., Lascano, D., Rojas-Lema, S., Ivorra-Martinez, J., Fenollar, O., & Torres-Giner, S. (2020). Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers. Polymers, 12(4), 821. doi:10.3390/polym12040821 es_ES
dc.description.references Lachenmeier, D. W., Teipel, J., Scharinger, A., Kuballa, T., Walch, S. G., Grosch, F., … Schwarz, S. (2020). Fully Automated Identification of Coffee Species and Simultaneous Quantification of Furfuryl Alcohol Using NMR Spectroscopy. Journal of AOAC INTERNATIONAL, 103(2), 306-314. doi:10.1093/jaocint/qsz020 es_ES
dc.description.references Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45-58. doi:10.1016/j.resconrec.2012.06.005 es_ES
dc.description.references Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661-672. doi:10.1007/s11947-011-0565-z es_ES
dc.description.references Roussos, S., de los Angeles Aquiáhuatl, M., del Refugio Trejo-Hernández, M., Gaime Perraud, I., Favela, E., Ramakrishna, M., … Viniegra-González, G. (1995). Biotechnological management of coffee pulp — isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Applied Microbiology and Biotechnology, 42(5), 756-762. doi:10.1007/bf00171958 es_ES
dc.description.references Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., … Mechichi, T. (2012). Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere, 88(6), 677-682. doi:10.1016/j.chemosphere.2012.03.053 es_ES
dc.description.references Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology, 7(12), 3493-3503. doi:10.1007/s11947-014-1349-z es_ES
dc.description.references Moustafa, H., Guizani, C., Dupont, C., Martin, V., Jeguirim, M., & Dufresne, A. (2017). Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustainable Chemistry & Engineering, 5(2), 1906-1916. doi:10.1021/acssuschemeng.6b02633 es_ES
dc.description.references Wang, Z., Dadi Bekele, L., Qiu, Y., Dai, Y., Zhu, S., Sarsaiya, S., & Chen, J. (2019). Preparation and characterization of coffee hull fiber for reinforcing application in thermoplastic composites. Bioengineered, 10(1), 397-408. doi:10.1080/21655979.2019.1661694 es_ES
dc.description.references García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080 es_ES
dc.description.references Gouvea, B. M., Torres, C., Franca, A. S., Oliveira, L. S., & Oliveira, E. S. (2009). Feasibility of ethanol production from coffee husks. Biotechnology Letters, 31(9), 1315-1319. doi:10.1007/s10529-009-0023-4 es_ES
dc.description.references Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F., & Pis, J. J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89(2), 169-175. doi:10.1016/j.fuproc.2007.09.002 es_ES
dc.description.references Chen, W.-H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847-866. doi:10.1016/j.rser.2014.12.039 es_ES
dc.description.references Ribeiro, J., Godina, R., Matias, J., & Nunes, L. (2018). Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. Sustainability, 10(7), 2323. doi:10.3390/su10072323 es_ES
dc.description.references Hamad, K., Kaseem, M., Ayyoob, M., Joo, J., & Deri, F. (2018). Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83-127. doi:10.1016/j.progpolymsci.2018.07.001 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Pineiro, F., Jorda-Vilaplana, A., & Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. Materials, 11(11), 2138. doi:10.3390/ma11112138 es_ES
dc.description.references Chen, Y., Geever, L. M., Killion, J. A., Lyons, J. G., Higginbotham, C. L., & Devine, D. M. (2016). Review of Multifarious Applications of Poly (Lactic Acid). Polymer-Plastics Technology and Engineering, 55(10), 1057-1075. doi:10.1080/03602559.2015.1132465 es_ES
dc.description.references Risyon, N. P., Othman, S. H., Basha, R. K., & Talib, R. A. (2020). Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packaging and Shelf Life, 23, 100450. doi:10.1016/j.fpsl.2019.100450 es_ES
dc.description.references Cardoso, R. M., Silva, P. R. L., Lima, A. P., Rocha, D. P., Oliveira, T. C., do Prado, T. M., … Muñoz, R. A. A. (2020). 3D-Printed graphene/polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sensors and Actuators B: Chemical, 307, 127621. doi:10.1016/j.snb.2019.127621 es_ES
dc.description.references Harris, A. M., & Lee, E. C. (2010). Heat and humidity performance of injection molded PLA for durable applications. Journal of Applied Polymer Science, 115(3), 1380-1389. doi:10.1002/app.30815 es_ES
dc.description.references Kumar, S., Bhatnagar, N., & Ghosh, A. K. (2016). Effect of enantiomeric monomeric unit ratio on thermal and mechanical properties of poly(lactide). Polymer Bulletin, 73(8), 2087-2104. doi:10.1007/s00289-015-1595-x es_ES
dc.description.references Rocha, D. B., Souza, A. G., Szostak, M., & Rosa, D. dos S. (2020). Polylactic acid/Lignocellulosic residue composites compatibilized through a starch coating. Polymer Composites, 41(8), 3250-3259. doi:10.1002/pc.25616 es_ES
dc.description.references Siakeng, R., Jawaid, M., Asim, M., & Siengchin, S. (2020). Accelerated Weathering and Soil Burial Effect on Biodegradability, Colour and Textureof Coir/Pineapple Leaf Fibres/PLA Biocomposites. Polymers, 12(2), 458. doi:10.3390/polym12020458 es_ES
dc.description.references Rojas-Lema, S., Quiles-Carrillo, L., Garcia-Garcia, D., Melendez-Rodriguez, B., Balart, R., & Torres-Giner, S. (2020). Tailoring the Properties of Thermo-Compressed Polylactide Films for Food Packaging Applications by Individual and Combined Additions of Lactic Acid Oligomer and Halloysite Nanotubes. Molecules, 25(8), 1976. doi:10.3390/molecules25081976 es_ES
dc.description.references Torres-Giner, S., Martinez-Abad, A., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Controlled Delivery of Gentamicin Antibiotic from Bioactive Electrospun Polylactide-Based Ultrathin Fibers. Advanced Engineering Materials, 14(4), B112-B122. doi:10.1002/adem.201180006 es_ES
dc.description.references Huang, L., Mu, B., Yi, X., Li, S., & Wang, Q. (2016). Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal of Polymers and the Environment, 26(1), 48-58. doi:10.1007/s10924-016-0917-x es_ES
dc.description.references Suaduang, N., Ross, S., Ross, G. M., Pratumshat, S., & Mahasaranon, S. (2019). Effect of spent coffee grounds filler on the physical and mechanical properties of poly(lactic acid) bio-composite films. Materials Today: Proceedings, 17, 2104-2110. doi:10.1016/j.matpr.2019.06.260 es_ES
dc.description.references Tsuji, H., Kawashima, Y., Takikawa, H., & Tanaka, S. (2007). Poly(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer, 48(14), 4213-4225. doi:10.1016/j.polymer.2007.05.040 es_ES
dc.description.references Balart, J. F., García-Sanoguera, D., Balart, R., Boronat, T., & Sánchez-Nacher, L. (2016). Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polymer Composites, 39(3), 848-857. doi:10.1002/pc.24007 es_ES
dc.description.references Wang, L., Qiu, J., Sakai, E., & Wei, X. (2016). The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Composites Part A: Applied Science and Manufacturing, 89, 18-25. doi:10.1016/j.compositesa.2015.12.016 es_ES
dc.description.references Arbelaiz, A., Txueka, U., Mezo, I., & Orue, A. (2020). Biocomposites Based on Poly(Lactic Acid) Matrix and Reinforced with Lignocellulosic Fibers: The Effect of Fiber Type and Matrix Modification. Journal of Natural Fibers, 1-14. doi:10.1080/15440478.2020.1726247 es_ES
dc.description.references Johari, A. P., Mohanty, S., Kurmvanshi, S. K., & Nayak, S. K. (2016). Influence of Different Treated Cellulose Fibers on the Mechanical and Thermal Properties of Poly(lactic acid). ACS Sustainable Chemistry & Engineering, 4(3), 1619-1629. doi:10.1021/acssuschemeng.5b01563 es_ES
dc.description.references Cataldo, V. A., Cavallaro, G., Lazzara, G., Milioto, S., & Parisi, F. (2017). Coffee grounds as filler for pectin: Green composites with competitive performances dependent on the UV irradiation. Carbohydrate Polymers, 170, 198-205. doi:10.1016/j.carbpol.2017.04.092 es_ES
dc.description.references Arrigo, Jagdale, Bartoli, Tagliaferro, & Malucelli. (2019). Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds. Polymers, 11(8), 1336. doi:10.3390/polym11081336 es_ES
dc.description.references Cisneros-López, E. O., Pérez-Fonseca, A. A., González-García, Y., Ramírez-Arreola, D. E., González-Núñez, R., Rodrigue, D., & Robledo-Ortíz, J. R. (2017). Polylactic acid-agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Advances in Polymer Technology, 37(7), 2528-2540. doi:10.1002/adv.21928 es_ES
dc.description.references Sonseca, A., Madani, S., Rodríguez, G., Hevilla, V., Echeverría, C., Fernández-García, M., … López, D. (2019). Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical, Antibacterial, and Degradation Properties. Nanomaterials, 10(1), 22. doi:10.3390/nano10010022 es_ES
dc.description.references Yaacab, N. D., Ismail, H., & Ting, S. S. (2016). Potential Use of Paddy Straw as Filler in Poly Lactic Acid/Paddy Straw Powder Biocomposite: Thermal and Thermal Properties. Procedia Chemistry, 19, 757-762. doi:10.1016/j.proche.2016.03.081 es_ES
dc.description.references Cai, H., Ba, Z., Yang, K., Zhang, Q., Zhao, K., & Gu, S. (2017). Pyrolysis characteristics of typical biomass thermoplastic composites. Results in Physics, 7, 3230-3235. doi:10.1016/j.rinp.2017.07.071 es_ES
dc.description.references De Brito, E. B., Tienne, L. G. P., Cordeiro, S. B., & Marques, M. de F. V. (2020). Development of Polypropylene Composites with Green Coffee Cake Fibers Subjected to Water Vapor Explosion. Waste and Biomass Valorization, 11(12), 6855-6867. doi:10.1007/s12649-019-00929-x es_ES
dc.description.references Totaro, G., Sisti, L., Fiorini, M., Lancellotti, I., Andreola, F. N., & Saccani, A. (2019). Formulation of Green Particulate Composites from PLA and PBS Matrix and Wastes Deriving from the Coffee Production. Journal of Polymers and the Environment, 27(7), 1488-1496. doi:10.1007/s10924-019-01447-6 es_ES
dc.description.references Sarasini, F., Tirillò, J., Zuorro, A., Maffei, G., Lavecchia, R., Puglia, D., … Torre, L. (2018). Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Industrial Crops and Products, 118, 311-320. doi:10.1016/j.indcrop.2018.03.070 es_ES
dc.description.references Bouzidi, F., Guessoum, M., Fois, M., & Haddaoui, N. (2017). Viscoelastic, thermo-mechanical and environmental properties of composites based on polypropylene/poly(lactic acid) blend and copper modified nanoclay. Journal of Adhesion Science and Technology, 32(5), 496-515. doi:10.1080/01694243.2017.1365422 es_ES
dc.description.references Kodama, M., & Karino, I. (1986). Effects of polar groups of polymer matrix on reinforcement-matrix interaction in kevlar fiber-reinforced composites. Journal of Applied Polymer Science, 32(5), 5057-5069. doi:10.1002/app.1986.070320525 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem