Mostrar el registro sencillo del ítem
dc.contributor.author | Ortiz-Barajas, Diana L. | es_ES |
dc.contributor.author | Arévalo-Prada, Johan A. | es_ES |
dc.contributor.author | Fenollar, Octavio | es_ES |
dc.contributor.author | Rueda-Ordóñez, Yesid J. | es_ES |
dc.contributor.author | Torres Giner, Sergio | es_ES |
dc.date.accessioned | 2021-06-03T03:31:34Z | |
dc.date.available | 2021-06-03T03:31:34Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167195 | |
dc.description.abstract | [EN] Coffee husk, a major lignocellulosic waste derived from the coffee industry, was first ground into flour of fine particles of approximately 90 mu m and then torrefied at 250 degrees C to make it more thermally stable and compatible with biopolymers. The resultant torrefied coffee husk flour (TCHF) was thereafter melt-compounded with polylactide (PLA) in contents from 20 to 50 wt% and the extruded green composite pellets were shaped by injection molding into pieces and characterized. Although the incorporation of TCHF reduced the ductility and toughness of PLA, filler contents of 20 wt% successfully yielded pieces with balanced mechanical properties in both tensile and flexural conditions and improved hardness. Contents of up to 30 wt% of TCHF also induced a nucleating effect that favored the formation of crystals of PLA, whereas the thermal degradation of the biopolyester was delayed by more than 7 degrees C. Furthermore, the PLA/TCHF pieces showed higher thermomechanical resistance and their softening point increased up to nearly 60 degrees C. Therefore, highly sustainable pieces were developed through the valorization of large amounts of coffee waste subjected to torrefaction. In the Circular Bioeconomy framework, these novel green composites can be used in the design of compostable rigid packaging and food contact disposables. | es_ES |
dc.description.sponsorship | This research work was funded by the Spanish Ministry of Science and Innovation (MICI), project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R, and by the Industrial University of Santander. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | PLA | es_ES |
dc.subject | Coffee husk | es_ES |
dc.subject | Torrefaction | es_ES |
dc.subject | Green composites | es_ES |
dc.subject | Waste valorization | es_ES |
dc.subject | Circular Bioeconomy | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10186468 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097249-B-C21/ES/ENVASE ACTIVO MULTICAPA TERMOCONFORMABLE DE ALTA BARRERA BASADO EN BIOECONOMIA CIRCULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Ortiz-Barajas, DL.; Arévalo-Prada, JA.; Fenollar, O.; Rueda-Ordóñez, YJ.; Torres Giner, S. (2020). Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability. Applied Sciences. 10(18):1-17. https://doi.org/10.3390/app10186468 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10186468 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 18 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\427466 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universidad Industrial de Santander, Colombia | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Guillard, V., Gaucel, S., Fornaciari, C., Angellier-Coussy, H., Buche, P., & Gontard, N. (2018). The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context. Frontiers in Nutrition, 5. doi:10.3389/fnut.2018.00121 | es_ES |
dc.description.references | Jurgilevich, A., Birge, T., Kentala-Lehtonen, J., Korhonen-Kurki, K., Pietikäinen, J., Saikku, L., & Schösler, H. (2016). Transition towards Circular Economy in the Food System. Sustainability, 8(1), 69. doi:10.3390/su8010069 | es_ES |
dc.description.references | Ramesh, M. (2019). Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science, 102, 109-166. doi:10.1016/j.pmatsci.2018.12.004 | es_ES |
dc.description.references | Agüero, Á., Lascano, D., Garcia-Sanoguera, D., Fenollar, O., & Torres-Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability, 12(2), 652. doi:10.3390/su12020652 | es_ES |
dc.description.references | Melendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152 | es_ES |
dc.description.references | Jothibasu, S., Mohanamurugan, S., Vijay, R., Lenin Singaravelu, D., Vinod, A., & Sanjay, M. (2018). Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. Journal of Industrial Textiles, 49(8), 1036-1060. doi:10.1177/1528083718804207 | es_ES |
dc.description.references | Kumaran, P., Mohanamurugan, S., Madhu, S., Vijay, R., Lenin Singaravelu, D., Vinod, A., … Siengchin, S. (2019). Investigation on thermo-mechanical characteristics of treated/untreated Portunus sanguinolentus shell powder-based jute fabrics reinforced epoxy composites. Journal of Industrial Textiles, 50(4), 427-459. doi:10.1177/1528083719832851 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 | es_ES |
dc.description.references | Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588 | es_ES |
dc.description.references | Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002 | es_ES |
dc.description.references | Chaitanya, S., & Singh, I. (2016). Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding. Materials and Manufacturing Processes, 32(5), 468-474. doi:10.1080/10426914.2016.1198034 | es_ES |
dc.description.references | Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Frontiers in Materials, 6. doi:10.3389/fmats.2019.00226 | es_ES |
dc.description.references | Adekomaya, O., Jamiru, T., Sadiku, R., & Huan, Z. (2015). A review on the sustainability of natural fiber in matrix reinforcement – A practical perspective. Journal of Reinforced Plastics and Composites, 35(1), 3-7. doi:10.1177/0731684415611974 | es_ES |
dc.description.references | Agüero, Á., Garcia-Sanoguera, D., Lascano, D., Rojas-Lema, S., Ivorra-Martinez, J., Fenollar, O., & Torres-Giner, S. (2020). Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers. Polymers, 12(4), 821. doi:10.3390/polym12040821 | es_ES |
dc.description.references | Lachenmeier, D. W., Teipel, J., Scharinger, A., Kuballa, T., Walch, S. G., Grosch, F., … Schwarz, S. (2020). Fully Automated Identification of Coffee Species and Simultaneous Quantification of Furfuryl Alcohol Using NMR Spectroscopy. Journal of AOAC INTERNATIONAL, 103(2), 306-314. doi:10.1093/jaocint/qsz020 | es_ES |
dc.description.references | Murthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45-58. doi:10.1016/j.resconrec.2012.06.005 | es_ES |
dc.description.references | Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661-672. doi:10.1007/s11947-011-0565-z | es_ES |
dc.description.references | Roussos, S., de los Angeles Aquiáhuatl, M., del Refugio Trejo-Hernández, M., Gaime Perraud, I., Favela, E., Ramakrishna, M., … Viniegra-González, G. (1995). Biotechnological management of coffee pulp — isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Applied Microbiology and Biotechnology, 42(5), 756-762. doi:10.1007/bf00171958 | es_ES |
dc.description.references | Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., … Mechichi, T. (2012). Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere, 88(6), 677-682. doi:10.1016/j.chemosphere.2012.03.053 | es_ES |
dc.description.references | Ballesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology, 7(12), 3493-3503. doi:10.1007/s11947-014-1349-z | es_ES |
dc.description.references | Moustafa, H., Guizani, C., Dupont, C., Martin, V., Jeguirim, M., & Dufresne, A. (2017). Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustainable Chemistry & Engineering, 5(2), 1906-1916. doi:10.1021/acssuschemeng.6b02633 | es_ES |
dc.description.references | Wang, Z., Dadi Bekele, L., Qiu, Y., Dai, Y., Zhu, S., Sarsaiya, S., & Chen, J. (2019). Preparation and characterization of coffee hull fiber for reinforcing application in thermoplastic composites. Bioengineered, 10(1), 397-408. doi:10.1080/21655979.2019.1661694 | es_ES |
dc.description.references | García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080 | es_ES |
dc.description.references | Gouvea, B. M., Torres, C., Franca, A. S., Oliveira, L. S., & Oliveira, E. S. (2009). Feasibility of ethanol production from coffee husks. Biotechnology Letters, 31(9), 1315-1319. doi:10.1007/s10529-009-0023-4 | es_ES |
dc.description.references | Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F., & Pis, J. J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 89(2), 169-175. doi:10.1016/j.fuproc.2007.09.002 | es_ES |
dc.description.references | Chen, W.-H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847-866. doi:10.1016/j.rser.2014.12.039 | es_ES |
dc.description.references | Ribeiro, J., Godina, R., Matias, J., & Nunes, L. (2018). Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. Sustainability, 10(7), 2323. doi:10.3390/su10072323 | es_ES |
dc.description.references | Hamad, K., Kaseem, M., Ayyoob, M., Joo, J., & Deri, F. (2018). Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83-127. doi:10.1016/j.progpolymsci.2018.07.001 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Pineiro, F., Jorda-Vilaplana, A., & Torres-Giner, S. (2018). Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. Materials, 11(11), 2138. doi:10.3390/ma11112138 | es_ES |
dc.description.references | Chen, Y., Geever, L. M., Killion, J. A., Lyons, J. G., Higginbotham, C. L., & Devine, D. M. (2016). Review of Multifarious Applications of Poly (Lactic Acid). Polymer-Plastics Technology and Engineering, 55(10), 1057-1075. doi:10.1080/03602559.2015.1132465 | es_ES |
dc.description.references | Risyon, N. P., Othman, S. H., Basha, R. K., & Talib, R. A. (2020). Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packaging and Shelf Life, 23, 100450. doi:10.1016/j.fpsl.2019.100450 | es_ES |
dc.description.references | Cardoso, R. M., Silva, P. R. L., Lima, A. P., Rocha, D. P., Oliveira, T. C., do Prado, T. M., … Muñoz, R. A. A. (2020). 3D-Printed graphene/polylactic acid electrode for bioanalysis: Biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sensors and Actuators B: Chemical, 307, 127621. doi:10.1016/j.snb.2019.127621 | es_ES |
dc.description.references | Harris, A. M., & Lee, E. C. (2010). Heat and humidity performance of injection molded PLA for durable applications. Journal of Applied Polymer Science, 115(3), 1380-1389. doi:10.1002/app.30815 | es_ES |
dc.description.references | Kumar, S., Bhatnagar, N., & Ghosh, A. K. (2016). Effect of enantiomeric monomeric unit ratio on thermal and mechanical properties of poly(lactide). Polymer Bulletin, 73(8), 2087-2104. doi:10.1007/s00289-015-1595-x | es_ES |
dc.description.references | Rocha, D. B., Souza, A. G., Szostak, M., & Rosa, D. dos S. (2020). Polylactic acid/Lignocellulosic residue composites compatibilized through a starch coating. Polymer Composites, 41(8), 3250-3259. doi:10.1002/pc.25616 | es_ES |
dc.description.references | Siakeng, R., Jawaid, M., Asim, M., & Siengchin, S. (2020). Accelerated Weathering and Soil Burial Effect on Biodegradability, Colour and Textureof Coir/Pineapple Leaf Fibres/PLA Biocomposites. Polymers, 12(2), 458. doi:10.3390/polym12020458 | es_ES |
dc.description.references | Rojas-Lema, S., Quiles-Carrillo, L., Garcia-Garcia, D., Melendez-Rodriguez, B., Balart, R., & Torres-Giner, S. (2020). Tailoring the Properties of Thermo-Compressed Polylactide Films for Food Packaging Applications by Individual and Combined Additions of Lactic Acid Oligomer and Halloysite Nanotubes. Molecules, 25(8), 1976. doi:10.3390/molecules25081976 | es_ES |
dc.description.references | Torres-Giner, S., Martinez-Abad, A., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Controlled Delivery of Gentamicin Antibiotic from Bioactive Electrospun Polylactide-Based Ultrathin Fibers. Advanced Engineering Materials, 14(4), B112-B122. doi:10.1002/adem.201180006 | es_ES |
dc.description.references | Huang, L., Mu, B., Yi, X., Li, S., & Wang, Q. (2016). Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal of Polymers and the Environment, 26(1), 48-58. doi:10.1007/s10924-016-0917-x | es_ES |
dc.description.references | Suaduang, N., Ross, S., Ross, G. M., Pratumshat, S., & Mahasaranon, S. (2019). Effect of spent coffee grounds filler on the physical and mechanical properties of poly(lactic acid) bio-composite films. Materials Today: Proceedings, 17, 2104-2110. doi:10.1016/j.matpr.2019.06.260 | es_ES |
dc.description.references | Tsuji, H., Kawashima, Y., Takikawa, H., & Tanaka, S. (2007). Poly(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer, 48(14), 4213-4225. doi:10.1016/j.polymer.2007.05.040 | es_ES |
dc.description.references | Balart, J. F., García-Sanoguera, D., Balart, R., Boronat, T., & Sánchez-Nacher, L. (2016). Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polymer Composites, 39(3), 848-857. doi:10.1002/pc.24007 | es_ES |
dc.description.references | Wang, L., Qiu, J., Sakai, E., & Wei, X. (2016). The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Composites Part A: Applied Science and Manufacturing, 89, 18-25. doi:10.1016/j.compositesa.2015.12.016 | es_ES |
dc.description.references | Arbelaiz, A., Txueka, U., Mezo, I., & Orue, A. (2020). Biocomposites Based on Poly(Lactic Acid) Matrix and Reinforced with Lignocellulosic Fibers: The Effect of Fiber Type and Matrix Modification. Journal of Natural Fibers, 1-14. doi:10.1080/15440478.2020.1726247 | es_ES |
dc.description.references | Johari, A. P., Mohanty, S., Kurmvanshi, S. K., & Nayak, S. K. (2016). Influence of Different Treated Cellulose Fibers on the Mechanical and Thermal Properties of Poly(lactic acid). ACS Sustainable Chemistry & Engineering, 4(3), 1619-1629. doi:10.1021/acssuschemeng.5b01563 | es_ES |
dc.description.references | Cataldo, V. A., Cavallaro, G., Lazzara, G., Milioto, S., & Parisi, F. (2017). Coffee grounds as filler for pectin: Green composites with competitive performances dependent on the UV irradiation. Carbohydrate Polymers, 170, 198-205. doi:10.1016/j.carbpol.2017.04.092 | es_ES |
dc.description.references | Arrigo, Jagdale, Bartoli, Tagliaferro, & Malucelli. (2019). Structure–Property Relationships in Polyethylene-Based Composites Filled with Biochar Derived from Waste Coffee Grounds. Polymers, 11(8), 1336. doi:10.3390/polym11081336 | es_ES |
dc.description.references | Cisneros-López, E. O., Pérez-Fonseca, A. A., González-García, Y., Ramírez-Arreola, D. E., González-Núñez, R., Rodrigue, D., & Robledo-Ortíz, J. R. (2017). Polylactic acid-agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Advances in Polymer Technology, 37(7), 2528-2540. doi:10.1002/adv.21928 | es_ES |
dc.description.references | Sonseca, A., Madani, S., Rodríguez, G., Hevilla, V., Echeverría, C., Fernández-García, M., … López, D. (2019). Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical, Antibacterial, and Degradation Properties. Nanomaterials, 10(1), 22. doi:10.3390/nano10010022 | es_ES |
dc.description.references | Yaacab, N. D., Ismail, H., & Ting, S. S. (2016). Potential Use of Paddy Straw as Filler in Poly Lactic Acid/Paddy Straw Powder Biocomposite: Thermal and Thermal Properties. Procedia Chemistry, 19, 757-762. doi:10.1016/j.proche.2016.03.081 | es_ES |
dc.description.references | Cai, H., Ba, Z., Yang, K., Zhang, Q., Zhao, K., & Gu, S. (2017). Pyrolysis characteristics of typical biomass thermoplastic composites. Results in Physics, 7, 3230-3235. doi:10.1016/j.rinp.2017.07.071 | es_ES |
dc.description.references | De Brito, E. B., Tienne, L. G. P., Cordeiro, S. B., & Marques, M. de F. V. (2020). Development of Polypropylene Composites with Green Coffee Cake Fibers Subjected to Water Vapor Explosion. Waste and Biomass Valorization, 11(12), 6855-6867. doi:10.1007/s12649-019-00929-x | es_ES |
dc.description.references | Totaro, G., Sisti, L., Fiorini, M., Lancellotti, I., Andreola, F. N., & Saccani, A. (2019). Formulation of Green Particulate Composites from PLA and PBS Matrix and Wastes Deriving from the Coffee Production. Journal of Polymers and the Environment, 27(7), 1488-1496. doi:10.1007/s10924-019-01447-6 | es_ES |
dc.description.references | Sarasini, F., Tirillò, J., Zuorro, A., Maffei, G., Lavecchia, R., Puglia, D., … Torre, L. (2018). Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Industrial Crops and Products, 118, 311-320. doi:10.1016/j.indcrop.2018.03.070 | es_ES |
dc.description.references | Bouzidi, F., Guessoum, M., Fois, M., & Haddaoui, N. (2017). Viscoelastic, thermo-mechanical and environmental properties of composites based on polypropylene/poly(lactic acid) blend and copper modified nanoclay. Journal of Adhesion Science and Technology, 32(5), 496-515. doi:10.1080/01694243.2017.1365422 | es_ES |
dc.description.references | Kodama, M., & Karino, I. (1986). Effects of polar groups of polymer matrix on reinforcement-matrix interaction in kevlar fiber-reinforced composites. Journal of Applied Polymer Science, 32(5), 5057-5069. doi:10.1002/app.1986.070320525 | es_ES |
dc.description.references | Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |