- -

Hierarchical Clustering of Materials With Defects Using Impact-Echo Testing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hierarchical Clustering of Materials With Defects Using Impact-Echo Testing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Igual García, Jorge es_ES
dc.date.accessioned 2021-06-03T03:31:40Z
dc.date.available 2021-06-03T03:31:40Z
dc.date.issued 2020-01-10 es_ES
dc.identifier.issn 0018-9456 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167197
dc.description "© © 2020 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works." es_ES
dc.description.abstract [EN] Signals obtained from impact-echo techniques can be used to detect and classify the defects in damaged materials. The defects change the wave propagation between the impact and the sensors producing particular spectrum elements, which define the feature vector. We propose a hierarchical clustering method that models the feature vector as a mixture of Gaussians (MoG) for every class and then merges different clusters using as a distance measure the symmetric Kullback-Leibler (KL) divergence. Since there is no closed-form solution to the KL divergence between MoGs, some approximations are introduced. We apply the hierarchical clustering algorithms to the signals obtained from real specimens made of aluminum alloy. The samples are classified into four classes according to the state: homogeneous (no defect), one hole, one crack, and multiple defects. We compare the performance of different approximations and discuss the dendrograms that are obtained. Similar kinds of defects are clustered first, and more importantly, the high-level hierarchy is able to distinguish between the defective and nondefective materials. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Instrumentation and Measurement es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Testing es_ES
dc.subject Clustering algorithms, Bayes methods es_ES
dc.subject Principal component analysis es_ES
dc.subject Data models es_ES
dc.subject Sensors es_ES
dc.subject Probabilistic logic es_ES
dc.subject Classification es_ES
dc.subject Hierarchical clustering es_ES
dc.subject Impact echo (IE) es_ES
dc.subject Kullback-Leibler (KL) divergence es_ES
dc.subject Mixture of Gaussians (MoG) es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Hierarchical Clustering of Materials With Defects Using Impact-Echo Testing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TIM.2020.2964911 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Igual García, J. (2020). Hierarchical Clustering of Materials With Defects Using Impact-Echo Testing. IEEE Transactions on Instrumentation and Measurement. 69(8):5316-5324. https://doi.org/10.1109/TIM.2020.2964911 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TIM.2020.2964911 es_ES
dc.description.upvformatpinicio 5316 es_ES
dc.description.upvformatpfin 5324 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 69 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\424171 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem