- -

Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benajes, Jesús es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author Gómez-Soriano, Josep es_ES
dc.contributor.author Barbery-Avila, Ibrahim Ignacio es_ES
dc.contributor.author Libert, C. es_ES
dc.contributor.author Rampanarivo, F. es_ES
dc.contributor.author Dabiri, M. es_ES
dc.date.accessioned 2021-06-03T03:31:47Z
dc.date.available 2021-06-03T03:31:47Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 1359-4311 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167199
dc.description.abstract [EN] In this paper, a computational study was performed using a combination of several numerical tools to better understand the limiting aspects of combustion in a passive pre-chamber ignition system when operating at lean conditions. A specific methodology was developed to analyze in detail the scavenging and combustion processes of this ignition concept. Results show how the scavenging of passive pre-chambers is primarily dependent on the force that the piston makes on the gas during the compression stroke, being independent of the pre-chamber geometry as along as the ratio between the total cross sectional area of the pre-chamber holes and the prechamber volume is kept within a suitable range. Moreover, a successful lean combustion, with an air-to-fuel ratio around 2, cannot be achieved as the burning rates inside the pre-chamber significantly decrease due to the low laminar flame speeds, that results in low quality jets. Further results show that increasing the flow temperature can help to recover competitive combustion rates when knocking combustion is not a limiting factor. The contribution of the heat losses through the pre-chamber walls to the overall energy balance of the pre-chamber has been estimated, showing that their impact is negligible (< 5%). Alternatives for increasing the laminar flame speed were proposed in order to improve combustion inside the pre-chamber. Although the pre-chamber combustion profile was successfully improved, none of the proposed solutions were able to completely burn the main chamber charge with the current pre-chamber design. es_ES
dc.description.sponsorship The work has been partially supported by the Spanish Ministerio de Economia y Competitividad through Grant No. TRA2017-89139-C2-1-R. J. Gomez-Soriano is partially supported through the Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia [Grant No. FPI-S2-2018-17367]. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Thermal Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Spark-ignition engines es_ES
dc.subject Passive pre-chamber es_ES
dc.subject Ultra-lean combustion es_ES
dc.subject Pre-chamber scavenge es_ES
dc.subject CFD combustion modelling es_ES
dc.subject Energy conversion es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.applthermaleng.2020.115501 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89139-C2-1-R/ES/DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL ANALISIS DE PLANTAS PROPULSIVAS DE TRANSPORTE SOSTENIBLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-S2-2018-17367/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Benajes, J.; Novella Rosa, R.; Gómez-Soriano, J.; Barbery-Avila, II.; Libert, C.; Rampanarivo, F.; Dabiri, M. (2020). Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines. Applied Thermal Engineering. 178:1-17. https://doi.org/10.1016/j.applthermaleng.2020.115501 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.applthermaleng.2020.115501 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 178 es_ES
dc.relation.pasarela S\427812 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J.T. Turnure, L. Westfall, International energy outlook 2016 with projections to 2040, Tech. rep., USDOE Energy Information Administration (EIA), Washington, DC (United States (2016). es_ES
dc.description.references Hageman, M. D., & Rothamer, D. A. (2019). Impacts of combustion phasing, load, and speed on soot formation in spark-ignition engines. International Journal of Engine Research, 21(3), 514-539. doi:10.1177/1468087419836584 es_ES
dc.description.references S.C. Davis, S.W. Diegel, R.G. Boundy, et al., Transportation energy data book, Tech. rep., Oak Ridge National Laboratory (2009). es_ES
dc.description.references A. Vressner, P. Gabrielsson, I. Gekas, E. Senar-Serra, Meeting the euro vi nox emission legislation using a euro iv base engine and a scr/asc/doc/dpf configuration in the world harmonized transient cycle, Tech. rep., SAE Technical Paper (2010). es_ES
dc.description.references Wang, J., Chen, H., Hu, Z., Yao, M., & Li, Y. (2014). A Review on the Pd-Based Three-Way Catalyst. Catalysis Reviews, 57(1), 79-144. doi:10.1080/01614940.2014.977059 es_ES
dc.description.references Heck, R. M., & Farrauto, R. J. (2001). Automobile exhaust catalysts. Applied Catalysis A: General, 221(1-2), 443-457. doi:10.1016/s0926-860x(01)00818-3 es_ES
dc.description.references W.P. Attard, S. Konidaris, F. Hamori, E. Toulson, H.C. Watson, Compression ratio effects on performance, efficiency, emissions and combustion in a carbureted and pfi small engine, Tech. rep., SAE Technical Paper (2007). es_ES
dc.description.references Celik, M. B. (2008). Experimental determination of suitable ethanol–gasoline blend rate at high compression ratio for gasoline engine. Applied Thermal Engineering, 28(5-6), 396-404. doi:10.1016/j.applthermaleng.2007.10.028 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006 es_ES
dc.description.references P. Pal, C. Kolodziej, S. Choi, A. Broatch, J. Gomez-Soriano, Y. Wu, T. Lu, Y.C. See, S. Som, Development of a Virtual CFR Engine Model for Knocking Combustion Analysis, SAE Technical Paper. es_ES
dc.description.references Pan, J., Wei, H., Shu, G., Pan, M., Feng, D., & Li, N. (2017). LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine. Applied Energy, 191, 183-192. doi:10.1016/j.apenergy.2017.01.044 es_ES
dc.description.references T. Tsurushima, E. Kunishima, Y. Asaumi, Y. Aoyagi, Y. Enomoto, The Effect of Knock on Heat Loss in Homogeneous Charge Compression Ignition Engines, SAE 2002 World Congress & Exhibitiondoi:10.4271/2002-01-0108. es_ES
dc.description.references Misdariis, A., Vermorel, O., & Poinsot, T. (2015). LES of knocking in engines using dual heat transfer and two-step reduced schemes. Combustion and Flame, 162(11), 4304-4312. doi:10.1016/j.combustflame.2015.07.023 es_ES
dc.description.references R.R. Maly, R. Klein, N. Peters, G. Konig, Theoretical and Experimental Investigation of Knock Induced Surface Destruction, International Congress & Expositiondoi:10.4271/900025. es_ES
dc.description.references M. Kowada, I. Azumagakito, T. Nagai, N. Iwai, R. Hiraoka, Study of Knocking Damage Indexing Based on Optical Measurement, SAE 2015 World Congress & Exhibitiondoi:10.4271/2015-01-0762. es_ES
dc.description.references Al-Sarkhi, A., Jaber, J. O., & Probert, S. D. (2006). Efficiency of a Miller engine. Applied Energy, 83(4), 343-351. doi:10.1016/j.apenergy.2005.04.003 es_ES
dc.description.references Zhao, J. (2017). Research and application of over-expansion cycle (Atkinson and Miller) engines – A review. Applied Energy, 185, 300-319. doi:10.1016/j.apenergy.2016.10.063 es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106 es_ES
dc.description.references G.J. Germane, C.G. Wood, C.C. Hess, Lean combustion in spark-ignited internal combustion engines-a review, Tech. rep., SAE Technical Paper (1983). es_ES
dc.description.references W.P. Attard, H. Blaxill, A lean burn gasoline fueled pre-chamber jet ignition combustion system achieving high efficiency and low nox at part load, Tech. rep., SAE Technical Paper (2012). es_ES
dc.description.references Tsuboi, S., Miyokawa, S., Matsuda, M., Yokomori, T., & Iida, N. (2019). Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine. Applied Energy, 250, 617-632. doi:10.1016/j.apenergy.2019.05.036 es_ES
dc.description.references T. Aoyama, Y. Hattori, J. Mizuta, Y. Sato, An experimental study on premixed-charge compression ignition gasoline engine, Tech. rep., SAE Technical paper (1996). es_ES
dc.description.references Broatch, A., Novella, R., García-Tíscar, J., & Gomez-Soriano, J. (2019). On the shift of acoustic characteristics of compression-ignited engines when operating with gasoline partially premixed combustion. Applied Thermal Engineering, 146, 223-231. doi:10.1016/j.applthermaleng.2018.09.089 es_ES
dc.description.references Z. Wang, J.-X. Wang, S.-J. Shuai, Q.-J. Ma, Effects of spark ignition and stratified charge on gasoline hcci combustion with direct injection, Tech. rep., SAE Technical Paper (2005). es_ES
dc.description.references Dias Ribeiro, M., Mendonça Bimbato, A., Araújo Zanardi, M., Perrella Balestieri, J. A., & Schmidt, D. P. (2020). Large-eddy simulation of the flow in a direct injection spark ignition engine using an open-source framework. International Journal of Engine Research, 22(4), 1064-1085. doi:10.1177/1468087420903622 es_ES
dc.description.references Biswas, S., & Qiao, L. (2018). Ignition of ultra-lean premixed hydrogen/air by an impinging hot jet. Applied Energy, 228, 954-964. doi:10.1016/j.apenergy.2018.06.102 es_ES
dc.description.references Biswas, S., & Qiao, L. (2018). Ignition of ultra-lean premixed H2/air using multiple hot turbulent jets generated by pre-chamber combustion. Applied Thermal Engineering, 132, 102-114. doi:10.1016/j.applthermaleng.2017.11.073 es_ES
dc.description.references Heyne, S., Meier, M., Imbert, B., & Favrat, D. (2009). Experimental investigation of prechamber autoignition in a natural gas engine for cogeneration. Fuel, 88(3), 547-552. doi:10.1016/j.fuel.2008.09.032 es_ES
dc.description.references E. Toulson, H.J. Schock, W.P. Attard, A review of pre-chamber initiated jet ignition combustion systems, Tech. rep., SAE Technical Paper (2010). es_ES
dc.description.references W.P. Attard, E. Toulson, A. Huisjen, X. Chen, G. Zhu, H. Schock, Spark ignition and pre-chamber turbulent jet ignition combustion visualization, Tech. rep., SAE Technical Paper (2012). es_ES
dc.description.references Alvarez, C. E. C., Couto, G. E., Roso, V. R., Thiriet, A. B., & Valle, R. M. (2018). A review of prechamber ignition systems as lean combustion technology for SI engines. Applied Thermal Engineering, 128, 107-120. doi:10.1016/j.applthermaleng.2017.08.118 es_ES
dc.description.references Attard, W. P., & Parsons, P. (2010). A Normally Aspirated Spark Initiated Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions in a Modern Vehicle Powertrain. SAE International Journal of Engines, 3(2), 269-287. doi:10.4271/2010-01-2196 es_ES
dc.description.references Attard, W. P., Blaxill, H., Anderson, E. K., & Litke, P. (2012). Knock Limit Extension with a Gasoline Fueled Pre-Chamber Jet Igniter in a Modern Vehicle Powertrain. SAE International Journal of Engines, 5(3), 1201-1215. doi:10.4271/2012-01-1143 es_ES
dc.description.references J.R.C. Gomes, R.M. Valle, F.J.P. Pujatti, J.P. Pereira, Torch ignition system analysis in an spark ignition engine, Tech. rep., SAE Technical Paper (2005). es_ES
dc.description.references E. Toulson, H.C. Watson, W.P. Attard, Modeling alternative prechamber fuels in jet assisted ignition of gasoline and lpg, Tech. rep., SAE Technical Paper (2009). es_ES
dc.description.references Y. Zeldovich, D. Frank-Kamenetskii, P. Sadovnikov, Oxidation of nitrogen in combustion, Publishing House of the Acad of Sciences of USSR, 1947. es_ES
dc.description.references Gentz, G., Gholamisheeri, M., & Toulson, E. (2017). A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization. Applied Energy, 189, 385-394. doi:10.1016/j.apenergy.2016.12.055 es_ES
dc.description.references J. Benajes, R. Novella, J. Gomez-Soriano, P. Martinez-Hernandiz, C. Libert, M. Dabiri, Performance of the passive pre-chamber ignition concept in a spark-ignition engine for passenger car applications, in: SIA Power Train & Electronics, SIA Power Train & Electronics, Paris, France, 2019. es_ES
dc.description.references Benajes, J., Novella, R., Gomez-Soriano, J., Martinez-Hernandiz, P. J., Libert, C., & Dabiri, M. (2019). Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines. Applied Energy, 248, 576-588. doi:10.1016/j.apenergy.2019.04.131 es_ES
dc.description.references Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 es_ES
dc.description.references Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 es_ES
dc.description.references CONVERGENT SCIENCE Inc., CONVERGE 2.4 Theory Manual (2018). es_ES
dc.description.references Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452 es_ES
dc.description.references Cant, S. (2001). S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, U.K., 2000, 771 pp. Combustion and Flame, 125(4), 1361-1362. doi:10.1016/s0010-2180(01)00244-9 es_ES
dc.description.references C. Angelberger, T. Poinsot, B. Delhay, Improving near-wall combustion and wall heat transfer modeling in si engine computations, Tech. rep., SAE Technical Paper (1997). es_ES
dc.description.references Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013 es_ES
dc.description.references F.E. Marble, J.E. Broadwell, The coherent flame model for turbulent chemical reactions, Tech. rep., PURDUE UNIV LAFAYETTE IN PROJECT SQUIDHEADQUARTERS (1977). es_ES
dc.description.references Colin, O., Benkenida, A., & Angelberger, C. (2003). 3d Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines. Oil & Gas Science and Technology, 58(1), 47-62. doi:10.2516/ogst:2003004 es_ES
dc.description.references Colin, O., & Benkenida, A. (2004). The 3-Zones Extended Coherent Flame Model (Ecfm3z) for Computing Premixed/Diffusion Combustion. Oil & Gas Science and Technology, 59(6), 593-609. doi:10.2516/ogst:2004043 es_ES
dc.description.references T. Poinsot, D. Veynante, Theoretical and numerical combustion, RT Edwards, Inc., 2005. es_ES
dc.description.references Colin, O., & Truffin, K. (2011). A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES). Proceedings of the Combustion Institute, 33(2), 3097-3104. doi:10.1016/j.proci.2010.07.023 es_ES
dc.description.references J. Duclos, O. Colin, (2–25) arc and kernel tracking ignition model for 3d spark-ignition engine calculations ((si-7) si engine combustion 7-modeling), in: The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 01.204, The Japan Society of Mechanical Engineers, 2001, p. 46. es_ES
dc.description.references Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9 es_ES
dc.description.references Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 es_ES
dc.description.references Liu, Y.-D., Jia, M., Xie, M.-Z., & Pang, B. (2012). Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology. Energy & Fuels, 26(12), 7069-7083. doi:10.1021/ef301242b es_ES
dc.description.references Wang, H., Yao, M., & Reitz, R. D. (2013). Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations. Energy & Fuels, 27(12), 7843-7853. doi:10.1021/ef401992e es_ES
dc.description.references Cai, L., & Pitsch, H. (2015). Optimized chemical mechanism for combustion of gasoline surrogate fuels. Combustion and Flame, 162(5), 1623-1637. doi:10.1016/j.combustflame.2014.11.018 es_ES
dc.description.references Mehl, M., Pitz, W. J., Westbrook, C. K., & Curran, H. J. (2011). Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proceedings of the Combustion Institute, 33(1), 193-200. doi:10.1016/j.proci.2010.05.027 es_ES
dc.description.references Fieweger, K., Blumenthal, R., & Adomeit, G. (1997). Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure. Combustion and Flame, 109(4), 599-619. doi:10.1016/s0010-2180(97)00049-7 es_ES
dc.description.references Davidson, D. F., Gauthier, B. M., & Hanson, R. K. (2005). Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures. Proceedings of the Combustion Institute, 30(1), 1175-1182. doi:10.1016/j.proci.2004.08.004 es_ES
dc.description.references Metghalchi, M., & Keck, J. C. (1982). Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combustion and Flame, 48, 191-210. doi:10.1016/0010-2180(82)90127-4 es_ES
dc.description.references Ö. L. Gülder, Correlations of laminar combustion data for alternative si engine fuels, Tech. rep., SAE Technical Paper (1984). es_ES
dc.description.references J. Brakora, R.D. Reitz, A comprehensive combustion model for biodiesel-fueled engine simulations, Tech. rep., SAE Technical Paper (2013). es_ES
dc.description.references JERZEMBECK, S., PETERS, N., PEPIOTDESJARDINS, P., & PITSCH, H. (2009). Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation. Combustion and Flame, 156(2), 292-301. doi:10.1016/j.combustflame.2008.11.009 es_ES
dc.description.references Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., & Veynante, D. (2009). Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combustion and Flame, 156(8), 1525-1541. doi:10.1016/j.combustflame.2009.04.007 es_ES
dc.description.references R. Novella, J. Pastor, J. Gomez-Soriano, I. Barbery, C. Libert, F. Rampanarivo, C. Panagiotis, M. Dabiri, Experimental and numerical analysis of passive pre-chamber ignition with egr and air dilution for future generation passenger car engines, SAE Technical Paper. es_ES
dc.description.references Yamaguchi, S., Ohiwa, N., & Hasegawa, T. (1985). Ignition and burning process in a divided chamber bomb. Combustion and Flame, 59(2), 177-187. doi:10.1016/0010-2180(85)90023-9 es_ES
dc.description.references POINSOT, T., HAWORTH, D., & BRUNEAUX, G. (1993). Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion☆. Combustion and Flame, 95(1-2), 118-132. doi:10.1016/0010-2180(93)90056-9 es_ES
dc.description.references N. Peters, Turbulent combustion (2001). es_ES
dc.description.references J. Kim, R. Scarcelli, S. Som, A. Shah, M.S. Biruduganti, D.E. Longman, Evaluation of combustion models for cfd simulation of pre-chamber ignition in a natural gas engine, Tech. rep., Argonne National Lab.(ANL), Argonne, IL (United States) (2019). es_ES
dc.description.references Feyz, M. E., Hasti, V. R., Gore, J. P., & Nalim, M. R. (2019). Large eddy simulation of hot jet ignition in moderate and high-reactivity mixtures. Computers & Fluids, 183, 28-37. doi:10.1016/j.compfluid.2019.03.014 es_ES
dc.description.references Colin, O., Ducros, F., Veynante, D., & Poinsot, T. (2000). A thickened flame model for large eddy simulations of turbulent premixed combustion. Physics of Fluids, 12(7), 1843-1863. doi:10.1063/1.870436 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem