- -

Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines

Mostrar el registro completo del ítem

Benajes, J.; Novella Rosa, R.; Gómez-Soriano, J.; Barbery-Avila, II.; Libert, C.; Rampanarivo, F.; Dabiri, M. (2020). Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines. Applied Thermal Engineering. 178:1-17. https://doi.org/10.1016/j.applthermaleng.2020.115501

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167199

Ficheros en el ítem

Metadatos del ítem

Título: Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines
Autor: Benajes, Jesús Novella Rosa, Ricardo Gómez-Soriano, Josep Barbery-Avila, Ibrahim Ignacio Libert, C. Rampanarivo, F. Dabiri, M.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] In this paper, a computational study was performed using a combination of several numerical tools to better understand the limiting aspects of combustion in a passive pre-chamber ignition system when operating at lean ...[+]
Palabras clave: Spark-ignition engines , Passive pre-chamber , Ultra-lean combustion , Pre-chamber scavenge , CFD combustion modelling , Energy conversion
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied Thermal Engineering. (issn: 1359-4311 )
DOI: 10.1016/j.applthermaleng.2020.115501
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.applthermaleng.2020.115501
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89139-C2-1-R/ES/DESARROLLO DE MODELOS DE COMBUSTION Y EMISIONES HPC PARA EL ANALISIS DE PLANTAS PROPULSIVAS DE TRANSPORTE SOSTENIBLES/
info:eu-repo/grantAgreement/UPV//FPI-S2-2018-17367/
Agradecimientos:
The work has been partially supported by the Spanish Ministerio de Economia y Competitividad through Grant No. TRA2017-89139-C2-1-R. J. Gomez-Soriano is partially supported through the Programa de Apoyo para la Investigacion ...[+]
Tipo: Artículo

References

J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J.T. Turnure, L. Westfall, International energy outlook 2016 with projections to 2040, Tech. rep., USDOE Energy Information Administration (EIA), Washington, DC (United States (2016).

Hageman, M. D., & Rothamer, D. A. (2019). Impacts of combustion phasing, load, and speed on soot formation in spark-ignition engines. International Journal of Engine Research, 21(3), 514-539. doi:10.1177/1468087419836584

S.C. Davis, S.W. Diegel, R.G. Boundy, et al., Transportation energy data book, Tech. rep., Oak Ridge National Laboratory (2009). [+]
J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J.T. Turnure, L. Westfall, International energy outlook 2016 with projections to 2040, Tech. rep., USDOE Energy Information Administration (EIA), Washington, DC (United States (2016).

Hageman, M. D., & Rothamer, D. A. (2019). Impacts of combustion phasing, load, and speed on soot formation in spark-ignition engines. International Journal of Engine Research, 21(3), 514-539. doi:10.1177/1468087419836584

S.C. Davis, S.W. Diegel, R.G. Boundy, et al., Transportation energy data book, Tech. rep., Oak Ridge National Laboratory (2009).

A. Vressner, P. Gabrielsson, I. Gekas, E. Senar-Serra, Meeting the euro vi nox emission legislation using a euro iv base engine and a scr/asc/doc/dpf configuration in the world harmonized transient cycle, Tech. rep., SAE Technical Paper (2010).

Wang, J., Chen, H., Hu, Z., Yao, M., & Li, Y. (2014). A Review on the Pd-Based Three-Way Catalyst. Catalysis Reviews, 57(1), 79-144. doi:10.1080/01614940.2014.977059

Heck, R. M., & Farrauto, R. J. (2001). Automobile exhaust catalysts. Applied Catalysis A: General, 221(1-2), 443-457. doi:10.1016/s0926-860x(01)00818-3

W.P. Attard, S. Konidaris, F. Hamori, E. Toulson, H.C. Watson, Compression ratio effects on performance, efficiency, emissions and combustion in a carbureted and pfi small engine, Tech. rep., SAE Technical Paper (2007).

Celik, M. B. (2008). Experimental determination of suitable ethanol–gasoline blend rate at high compression ratio for gasoline engine. Applied Thermal Engineering, 28(5-6), 396-404. doi:10.1016/j.applthermaleng.2007.10.028

Torregrosa, A. J., Broatch, A., Gil, A., & Gomez-Soriano, J. (2018). Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Applied Acoustics, 135, 91-100. doi:10.1016/j.apacoust.2018.02.006

P. Pal, C. Kolodziej, S. Choi, A. Broatch, J. Gomez-Soriano, Y. Wu, T. Lu, Y.C. See, S. Som, Development of a Virtual CFR Engine Model for Knocking Combustion Analysis, SAE Technical Paper.

Pan, J., Wei, H., Shu, G., Pan, M., Feng, D., & Li, N. (2017). LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine. Applied Energy, 191, 183-192. doi:10.1016/j.apenergy.2017.01.044

T. Tsurushima, E. Kunishima, Y. Asaumi, Y. Aoyagi, Y. Enomoto, The Effect of Knock on Heat Loss in Homogeneous Charge Compression Ignition Engines, SAE 2002 World Congress & Exhibitiondoi:10.4271/2002-01-0108.

Misdariis, A., Vermorel, O., & Poinsot, T. (2015). LES of knocking in engines using dual heat transfer and two-step reduced schemes. Combustion and Flame, 162(11), 4304-4312. doi:10.1016/j.combustflame.2015.07.023

R.R. Maly, R. Klein, N. Peters, G. Konig, Theoretical and Experimental Investigation of Knock Induced Surface Destruction, International Congress & Expositiondoi:10.4271/900025.

M. Kowada, I. Azumagakito, T. Nagai, N. Iwai, R. Hiraoka, Study of Knocking Damage Indexing Based on Optical Measurement, SAE 2015 World Congress & Exhibitiondoi:10.4271/2015-01-0762.

Al-Sarkhi, A., Jaber, J. O., & Probert, S. D. (2006). Efficiency of a Miller engine. Applied Energy, 83(4), 343-351. doi:10.1016/j.apenergy.2005.04.003

Zhao, J. (2017). Research and application of over-expansion cycle (Atkinson and Miller) engines – A review. Applied Energy, 185, 300-319. doi:10.1016/j.apenergy.2016.10.063

Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106

G.J. Germane, C.G. Wood, C.C. Hess, Lean combustion in spark-ignited internal combustion engines-a review, Tech. rep., SAE Technical Paper (1983).

W.P. Attard, H. Blaxill, A lean burn gasoline fueled pre-chamber jet ignition combustion system achieving high efficiency and low nox at part load, Tech. rep., SAE Technical Paper (2012).

Tsuboi, S., Miyokawa, S., Matsuda, M., Yokomori, T., & Iida, N. (2019). Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine. Applied Energy, 250, 617-632. doi:10.1016/j.apenergy.2019.05.036

T. Aoyama, Y. Hattori, J. Mizuta, Y. Sato, An experimental study on premixed-charge compression ignition gasoline engine, Tech. rep., SAE Technical paper (1996).

Broatch, A., Novella, R., García-Tíscar, J., & Gomez-Soriano, J. (2019). On the shift of acoustic characteristics of compression-ignited engines when operating with gasoline partially premixed combustion. Applied Thermal Engineering, 146, 223-231. doi:10.1016/j.applthermaleng.2018.09.089

Z. Wang, J.-X. Wang, S.-J. Shuai, Q.-J. Ma, Effects of spark ignition and stratified charge on gasoline hcci combustion with direct injection, Tech. rep., SAE Technical Paper (2005).

Dias Ribeiro, M., Mendonça Bimbato, A., Araújo Zanardi, M., Perrella Balestieri, J. A., & Schmidt, D. P. (2020). Large-eddy simulation of the flow in a direct injection spark ignition engine using an open-source framework. International Journal of Engine Research, 22(4), 1064-1085. doi:10.1177/1468087420903622

Biswas, S., & Qiao, L. (2018). Ignition of ultra-lean premixed hydrogen/air by an impinging hot jet. Applied Energy, 228, 954-964. doi:10.1016/j.apenergy.2018.06.102

Biswas, S., & Qiao, L. (2018). Ignition of ultra-lean premixed H2/air using multiple hot turbulent jets generated by pre-chamber combustion. Applied Thermal Engineering, 132, 102-114. doi:10.1016/j.applthermaleng.2017.11.073

Heyne, S., Meier, M., Imbert, B., & Favrat, D. (2009). Experimental investigation of prechamber autoignition in a natural gas engine for cogeneration. Fuel, 88(3), 547-552. doi:10.1016/j.fuel.2008.09.032

E. Toulson, H.J. Schock, W.P. Attard, A review of pre-chamber initiated jet ignition combustion systems, Tech. rep., SAE Technical Paper (2010).

W.P. Attard, E. Toulson, A. Huisjen, X. Chen, G. Zhu, H. Schock, Spark ignition and pre-chamber turbulent jet ignition combustion visualization, Tech. rep., SAE Technical Paper (2012).

Alvarez, C. E. C., Couto, G. E., Roso, V. R., Thiriet, A. B., & Valle, R. M. (2018). A review of prechamber ignition systems as lean combustion technology for SI engines. Applied Thermal Engineering, 128, 107-120. doi:10.1016/j.applthermaleng.2017.08.118

Attard, W. P., & Parsons, P. (2010). A Normally Aspirated Spark Initiated Combustion System Capable of High Load, High Efficiency and Near Zero NOx Emissions in a Modern Vehicle Powertrain. SAE International Journal of Engines, 3(2), 269-287. doi:10.4271/2010-01-2196

Attard, W. P., Blaxill, H., Anderson, E. K., & Litke, P. (2012). Knock Limit Extension with a Gasoline Fueled Pre-Chamber Jet Igniter in a Modern Vehicle Powertrain. SAE International Journal of Engines, 5(3), 1201-1215. doi:10.4271/2012-01-1143

J.R.C. Gomes, R.M. Valle, F.J.P. Pujatti, J.P. Pereira, Torch ignition system analysis in an spark ignition engine, Tech. rep., SAE Technical Paper (2005).

E. Toulson, H.C. Watson, W.P. Attard, Modeling alternative prechamber fuels in jet assisted ignition of gasoline and lpg, Tech. rep., SAE Technical Paper (2009).

Y. Zeldovich, D. Frank-Kamenetskii, P. Sadovnikov, Oxidation of nitrogen in combustion, Publishing House of the Acad of Sciences of USSR, 1947.

Gentz, G., Gholamisheeri, M., & Toulson, E. (2017). A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization. Applied Energy, 189, 385-394. doi:10.1016/j.apenergy.2016.12.055

J. Benajes, R. Novella, J. Gomez-Soriano, P. Martinez-Hernandiz, C. Libert, M. Dabiri, Performance of the passive pre-chamber ignition concept in a spark-ignition engine for passenger car applications, in: SIA Power Train & Electronics, SIA Power Train & Electronics, Paris, France, 2019.

Benajes, J., Novella, R., Gomez-Soriano, J., Martinez-Hernandiz, P. J., Libert, C., & Dabiri, M. (2019). Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines. Applied Energy, 248, 576-588. doi:10.1016/j.apenergy.2019.04.131

Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006

Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1

CONVERGENT SCIENCE Inc., CONVERGE 2.4 Theory Manual (2018).

Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452

Cant, S. (2001). S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, U.K., 2000, 771 pp. Combustion and Flame, 125(4), 1361-1362. doi:10.1016/s0010-2180(01)00244-9

C. Angelberger, T. Poinsot, B. Delhay, Improving near-wall combustion and wall heat transfer modeling in si engine computations, Tech. rep., SAE Technical Paper (1997).

Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013

F.E. Marble, J.E. Broadwell, The coherent flame model for turbulent chemical reactions, Tech. rep., PURDUE UNIV LAFAYETTE IN PROJECT SQUIDHEADQUARTERS (1977).

Colin, O., Benkenida, A., & Angelberger, C. (2003). 3d Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines. Oil & Gas Science and Technology, 58(1), 47-62. doi:10.2516/ogst:2003004

Colin, O., & Benkenida, A. (2004). The 3-Zones Extended Coherent Flame Model (Ecfm3z) for Computing Premixed/Diffusion Combustion. Oil & Gas Science and Technology, 59(6), 593-609. doi:10.2516/ogst:2004043

T. Poinsot, D. Veynante, Theoretical and numerical combustion, RT Edwards, Inc., 2005.

Colin, O., & Truffin, K. (2011). A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES). Proceedings of the Combustion Institute, 33(2), 3097-3104. doi:10.1016/j.proci.2010.07.023

J. Duclos, O. Colin, (2–25) arc and kernel tracking ignition model for 3d spark-ignition engine calculations ((si-7) si engine combustion 7-modeling), in: The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 01.204, The Japan Society of Mechanical Engineers, 2001, p. 46.

Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9

Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021

Liu, Y.-D., Jia, M., Xie, M.-Z., & Pang, B. (2012). Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology. Energy & Fuels, 26(12), 7069-7083. doi:10.1021/ef301242b

Wang, H., Yao, M., & Reitz, R. D. (2013). Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations. Energy & Fuels, 27(12), 7843-7853. doi:10.1021/ef401992e

Cai, L., & Pitsch, H. (2015). Optimized chemical mechanism for combustion of gasoline surrogate fuels. Combustion and Flame, 162(5), 1623-1637. doi:10.1016/j.combustflame.2014.11.018

Mehl, M., Pitz, W. J., Westbrook, C. K., & Curran, H. J. (2011). Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proceedings of the Combustion Institute, 33(1), 193-200. doi:10.1016/j.proci.2010.05.027

Fieweger, K., Blumenthal, R., & Adomeit, G. (1997). Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure. Combustion and Flame, 109(4), 599-619. doi:10.1016/s0010-2180(97)00049-7

Davidson, D. F., Gauthier, B. M., & Hanson, R. K. (2005). Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures. Proceedings of the Combustion Institute, 30(1), 1175-1182. doi:10.1016/j.proci.2004.08.004

Metghalchi, M., & Keck, J. C. (1982). Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combustion and Flame, 48, 191-210. doi:10.1016/0010-2180(82)90127-4

Ö. L. Gülder, Correlations of laminar combustion data for alternative si engine fuels, Tech. rep., SAE Technical Paper (1984).

J. Brakora, R.D. Reitz, A comprehensive combustion model for biodiesel-fueled engine simulations, Tech. rep., SAE Technical Paper (2013).

JERZEMBECK, S., PETERS, N., PEPIOTDESJARDINS, P., & PITSCH, H. (2009). Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation. Combustion and Flame, 156(2), 292-301. doi:10.1016/j.combustflame.2008.11.009

Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., & Veynante, D. (2009). Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combustion and Flame, 156(8), 1525-1541. doi:10.1016/j.combustflame.2009.04.007

R. Novella, J. Pastor, J. Gomez-Soriano, I. Barbery, C. Libert, F. Rampanarivo, C. Panagiotis, M. Dabiri, Experimental and numerical analysis of passive pre-chamber ignition with egr and air dilution for future generation passenger car engines, SAE Technical Paper.

Yamaguchi, S., Ohiwa, N., & Hasegawa, T. (1985). Ignition and burning process in a divided chamber bomb. Combustion and Flame, 59(2), 177-187. doi:10.1016/0010-2180(85)90023-9

POINSOT, T., HAWORTH, D., & BRUNEAUX, G. (1993). Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion☆. Combustion and Flame, 95(1-2), 118-132. doi:10.1016/0010-2180(93)90056-9

N. Peters, Turbulent combustion (2001).

J. Kim, R. Scarcelli, S. Som, A. Shah, M.S. Biruduganti, D.E. Longman, Evaluation of combustion models for cfd simulation of pre-chamber ignition in a natural gas engine, Tech. rep., Argonne National Lab.(ANL), Argonne, IL (United States) (2019).

Feyz, M. E., Hasti, V. R., Gore, J. P., & Nalim, M. R. (2019). Large eddy simulation of hot jet ignition in moderate and high-reactivity mixtures. Computers & Fluids, 183, 28-37. doi:10.1016/j.compfluid.2019.03.014

Colin, O., Ducros, F., Veynante, D., & Poinsot, T. (2000). A thickened flame model for large eddy simulations of turbulent premixed combustion. Physics of Fluids, 12(7), 1843-1863. doi:10.1063/1.870436

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem