- -

Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Desantes, J.M. es_ES
dc.contributor.author García-Oliver, José M es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author Pérez-Sánchez, E.J. es_ES
dc.date.accessioned 2021-06-03T03:31:56Z
dc.date.available 2021-06-03T03:31:56Z
dc.date.issued 2020-03-30 es_ES
dc.identifier.issn 0045-7930 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167201
dc.description.abstract [EN] Spray A from ECN, representative of diesel-like sprays, is modelled in the frame of Large-Eddy Simulations (LES) with a Dynamic Structure (DS) turbulence model in conjunction with an Unsteady Flamelet Progress Variable (UFPV) combustion model. In this work, the spray flow field is first calibrated under inert conditions against experimental data. In a second step, the reactive spray is simulated in order to describe the flame internal structure when varying ambient temperature. The model shows a good agreement with experimental results and describes the trends observed in flame global parameters, such as ignition delay (ID) and lift-offlength (LOL). Low fluctuations are observed in LOL positioning revealing an intense chemical activity at the height of the base of the flame, which stabilizes the reaction in spite of the turbulent fluctuations. The analysis of the LES instantaneous fields shows how ignition kernels appear upstream of the base of the flame, clearly detached from the reaction zone, and grow and merge with the main flame in agreement with previous reported experimental and modelling results. The ambient temperature has a clear impact on the flame structure described by the model and the whole set of results reveal that in the frame of LES simulations the UFPV model is suitable for the calculation of diesel flames. es_ES
dc.description.sponsorship Authors acknowledge that this work was possible thanks to the Ayuda para la Formacion de Profesorado Universitario (FPU 14/03278) belonging to the Subprogramas de Formacion y de Movilidad del Ministerio de Educacion, Cultura y Deporte from Spain. Also this study was partially funded by the Ministerio de Economia y Competitividad from Spain in the frame of the COMEFF national project (TRA2014-59483-R). Finally, the authors thankfully acknowledge the computer resources at MareNostrum and technical support provided by Barcelona Supercomputing Center (RES-FI-2017-2-0044). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers & Fluids es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Large-Eddy simulation es_ES
dc.subject Spray A es_ES
dc.subject Non-premixed flames es_ES
dc.subject Chemical mechanism es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compfluid.2019.104419 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2014-59483-R/ES/MODELOS AVANZADOS DE COMBUSTION EN SPRAYS PARA PLANTAS PROPULSIVAS EFICIENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU14%2F03278/ES/FPU14%2F03278/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BSC//RES-FI-2017-2-0044/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Desantes, J.; García-Oliver, JM.; Novella Rosa, R.; Pérez-Sánchez, E. (2020). Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray. Computers & Fluids. 200:1-15. https://doi.org/10.1016/j.compfluid.2019.104419 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compfluid.2019.104419 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 200 es_ES
dc.relation.pasarela S\424721 es_ES
dc.contributor.funder Barcelona Supercomputing Center es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Maes, N., Meijer, M., Dam, N., Somers, B., Baya Toda, H., Bruneaux, G., … Manin, J. (2016). Characterization of Spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence. Combustion and Flame, 174, 138-151. doi:10.1016/j.combustflame.2016.09.005 es_ES
dc.description.references Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837 es_ES
dc.description.references Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042 es_ES
dc.description.references Naud, B., Novella, R., Pastor, J. M., & Winklinger, J. F. (2015). RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combustion and Flame, 162(4), 893-906. doi:10.1016/j.combustflame.2014.09.014 es_ES
dc.description.references Pei, Y., Hawkes, E. R., Kook, S., Goldin, G. M., & Lu, T. (2015). Modelling n-dodecane spray and combustion with the transported probability density function method. Combustion and Flame, 162(5), 2006-2019. doi:10.1016/j.combustflame.2014.12.019 es_ES
dc.description.references Desantes, J. M., García-Oliver, J. M., Novella, R., & Pérez-Sánchez, E. J. (2017). Application of an unsteady flamelet model in a RANS framework for spray A simulation. Applied Thermal Engineering, 117, 50-64. doi:10.1016/j.applthermaleng.2017.01.101 es_ES
dc.description.references Pitsch, H. (2006). LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION. Annual Review of Fluid Mechanics, 38(1), 453-482. doi:10.1146/annurev.fluid.38.050304.092133 es_ES
dc.description.references Pei, Y., Som, S., Pomraning, E., Senecal, P. K., Skeen, S. A., Manin, J., & Pickett, L. M. (2015). Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions. Combustion and Flame, 162(12), 4442-4455. doi:10.1016/j.combustflame.2015.08.010 es_ES
dc.description.references Nassiri Toosi, A., Farokhi, M., & Mashadi, B. (2015). Application of modified eddy dissipation concept with large eddy simulation for numerical investigation of internal combustion engines. Computers & Fluids, 109, 85-99. doi:10.1016/j.compfluid.2014.11.029 es_ES
dc.description.references Buhl, S., Dietzsch, F., Buhl, C., & Hasse, C. (2017). Comparative study of turbulence models for scale-resolving simulations of internal combustion engine flows. Computers & Fluids, 156, 66-80. doi:10.1016/j.compfluid.2017.06.023 es_ES
dc.description.references Kahila, H., Wehrfritz, A., Kaario, O., Ghaderi Masouleh, M., Maes, N., Somers, B., & Vuorinen, V. (2018). Large-eddy simulation on the influence of injection pressure in reacting Spray A. Combustion and Flame, 191, 142-159. doi:10.1016/j.combustflame.2018.01.004 es_ES
dc.description.references Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgrid‐scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7), 1760-1765. doi:10.1063/1.857955 es_ES
dc.description.references Yoshizawa, A., & Horiuti, K. (1985). A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows. Journal of the Physical Society of Japan, 54(8), 2834-2839. doi:10.1143/jpsj.54.2834 es_ES
dc.description.references Ketterl, S., & Klein, M. (2018). A-priori assessment of subgrid scale models for large-eddy simulation of multiphase primary breakup. Computers & Fluids, 165, 64-77. doi:10.1016/j.compfluid.2018.01.002 es_ES
dc.description.references Pomraning, E., & Rutland, C. J. (2002). Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model. AIAA Journal, 40(4), 689-701. doi:10.2514/2.1701 es_ES
dc.description.references Bharadwaj, N., Rutland, C. J., & Chang, S. (2009). Large eddy simulation modelling of spray-induced turbulence effects. International Journal of Engine Research, 10(2), 97-119. doi:10.1243/14680874jer02309 es_ES
dc.description.references Lucchini, T., D’Errico, G., Ettorre, D., & Ferrari, G. (2009). Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels. SAE International Journal of Fuels and Lubricants, 2(1), 966-975. doi:10.4271/2009-01-1971 es_ES
dc.description.references Fooladgar, E., Chan, C. K., & Nogenmyr, K.-J. (2017). An accelerated computation of combustion with finite-rate chemistry using LES and an open source library for In-Situ-Adaptive Tabulation. Computers & Fluids, 146, 42-50. doi:10.1016/j.compfluid.2017.01.008 es_ES
dc.description.references Bhattacharjee, S., & Haworth, D. C. (2013). Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame, 160(10), 2083-2102. doi:10.1016/j.combustflame.2013.05.003 es_ES
dc.description.references Barths, H., Hasse, C., Bikas, G., & Peters, N. (2000). Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model. Proceedings of the Combustion Institute, 28(1), 1161-1168. doi:10.1016/s0082-0784(00)80326-4 es_ES
dc.description.references D’Errico, G., Lucchini, T., Contino, F., Jangi, M., & Bai, X.-S. (2014). Comparison of well-mixed and multiple representative interactive flamelet approaches for diesel spray combustion modelling. Combustion Theory and Modelling, 18(1), 65-88. doi:10.1080/13647830.2013.860238 es_ES
dc.description.references Wehrfritz, A., Kaario, O., Vuorinen, V., & Somers, B. (2016). Large Eddy Simulation of n-dodecane spray flames using Flamelet Generated Manifolds. Combustion and Flame, 167, 113-131. doi:10.1016/j.combustflame.2016.02.019 es_ES
dc.description.references Pei, Y., Hawkes, E. R., Bolla, M., Kook, S., Goldin, G. M., Yang, Y., … Som, S. (2016). An analysis of the structure of an n-dodecane spray flame using TPDF modelling. Combustion and Flame, 168, 420-435. doi:10.1016/j.combustflame.2015.11.034 es_ES
dc.description.references Idicheria, C. A., & Pickett, L. M. (2006). Formaldehyde Visualization Near Lift-off Location in a Diesel Jet. SAE Technical Paper Series. doi:10.4271/2006-01-3434 es_ES
dc.description.references Pickett, L. M., Siebers, D. L., & Idicheria, C. A. (2005). Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets. SAE Technical Paper Series. doi:10.4271/2005-01-3843 es_ES
dc.description.references Tagliante, F., Malbec, L.-M., Bruneaux, G., Pickett, L. M., & Angelberger, C. (2018). Experimental study of the stabilization mechanism of a lifted Diesel-type flame using combined optical diagnostics and laser-induced plasma ignition. Combustion and Flame, 197, 215-226. doi:10.1016/j.combustflame.2018.07.024 es_ES
dc.description.references Gong, C., Jangi, M., & Bai, X.-S. (2014). Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Applied Energy, 136, 373-381. doi:10.1016/j.apenergy.2014.09.030 es_ES
dc.description.references OIJEN, J. A. V., & GOEY, L. P. H. D. (2000). Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds. Combustion Science and Technology, 161(1), 113-137. doi:10.1080/00102200008935814 es_ES
dc.description.references PIERCE, C. D., & MOIN, P. (2004). Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 504, 73-97. doi:10.1017/s0022112004008213 es_ES
dc.description.references Ihme, M., & Pitsch, H. (2008). Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 155(1-2), 70-89. doi:10.1016/j.combustflame.2008.04.001 es_ES
dc.description.references Ihme, M., & Pitsch, H. (2008). Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 155(1-2), 90-107. doi:10.1016/j.combustflame.2008.04.015 es_ES
dc.description.references Tillou, J., Michel, J.-B., Angelberger, C., Bekdemir, C., & Veynante, D. (2013). Large-Eddy Simulation of Diesel Spray Combustion with Exhaust Gas Recirculation. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 69(1), 155-165. doi:10.2516/ogst/2013139 es_ES
dc.description.references Peters, N. (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10(3), 319-339. doi:10.1016/0360-1285(84)90114-x es_ES
dc.description.references Gicquel, O., Darabiha, N., & Thévenin, D. (2000). Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute, 28(2), 1901-1908. doi:10.1016/s0082-0784(00)80594-9 es_ES
dc.description.references Maas, U., & Pope, S. B. (1992). Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame, 88(3-4), 239-264. doi:10.1016/0010-2180(92)90034-m es_ES
dc.description.references Michel, J.-B., Colin, O., & Veynante, D. (2008). Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combustion and Flame, 152(1-2), 80-99. doi:10.1016/j.combustflame.2007.09.001 es_ES
dc.description.references Michel, J.-B., & Colin, O. (2013). A tabulated diffusion flame model applied to diesel engine simulations. International Journal of Engine Research, 15(3), 346-369. doi:10.1177/1468087413488590 es_ES
dc.description.references Tillou, J., Michel, J.-B., Angelberger, C., & Veynante, D. (2014). Assessing LES models based on tabulated chemistry for the simulation of Diesel spray combustion. Combustion and Flame, 161(2), 525-540. doi:10.1016/j.combustflame.2013.09.006 es_ES
dc.description.references Dec, J. E. (1997). A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*. SAE Technical Paper Series. doi:10.4271/970873 es_ES
dc.description.references García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023 es_ES
dc.description.references Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309 es_ES
dc.description.references CMT - Motores Térmicos. Universitat Politècnica de València, Spain, http://www.cmtupves/ECN03aspx 2019. es_ES
dc.description.references Open FOAM. http://www.openfoamcom/ 2019. es_ES
dc.description.references Senecal, P. K., Pomraning, E., Richards, K. J., & Som, S. (2013). An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model. SAE Technical Paper Series. doi:10.4271/2013-01-1083 es_ES
dc.description.references Xue Q, Som S, Senecal P, Pomraning E. A study of grid resolution and SGS models for LES under non-reacting spray conditions 2013. 25th Annual Conference on Liquid Atomization and Spray Systems. es_ES
dc.description.references Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40 es_ES
dc.description.references Chemkin-PRO. http://www.reactiondesigncom/products/chemkin/ 2019. es_ES
dc.description.references Payri, F., Novella, R., Pastor, J. M., & Pérez-Sánchez, E. J. (2017). Evaluation of the approximated diffusion flamelet concept using fuels with different chemical complexity. Applied Mathematical Modelling, 49, 354-374. doi:10.1016/j.apm.2017.04.024 es_ES
dc.description.references Chen, Y., & Ihme, M. (2013). Large-eddy simulation of a piloted premixed jet burner. Combustion and Flame, 160(12), 2896-2910. doi:10.1016/j.combustflame.2013.07.009 es_ES
dc.description.references Pera, C., Colin, O., & Jay, S. (2009). Development of a FPI Detailed Chemistry Tabulation Methodology for Internal Combustion Engines. Oil & Gas Science and Technology - Revue de l’IFP, 64(3), 243-258. doi:10.2516/ogst/2009002 es_ES
dc.description.references Narayanaswamy, K., Pepiot, P., & Pitsch, H. (2014). A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combustion and Flame, 161(4), 866-884. doi:10.1016/j.combustflame.2013.10.012 es_ES
dc.description.references Frassoldati, A., D’Errico, G., Lucchini, T., Stagni, A., Cuoci, A., Faravelli, T., … Ranzi, E. (2015). Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations. Combustion and Flame, 162(10), 3991-4007. doi:10.1016/j.combustflame.2015.07.039 es_ES
dc.description.references Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686 es_ES
dc.description.references Subramaniam, S. (2013). Lagrangian–Eulerian methods for multiphase flows. Progress in Energy and Combustion Science, 39(2-3), 215-245. doi:10.1016/j.pecs.2012.10.003 es_ES
dc.description.references Duwig, C., & Fuchs, L. (2008). Large Eddy Simulation of a H2/N2Lifted Flame in a Vitiated Co-Flow. Combustion Science and Technology, 180(3), 453-480. doi:10.1080/00102200701741327 es_ES
dc.description.references Tagliante, F., Poinsot, T., Pickett, L. M., Pepiot, P., Malbec, L.-M., Bruneaux, G., & Angelberger, C. (2019). A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments. Combustion and Flame, 201, 65-77. doi:10.1016/j.combustflame.2018.12.007 es_ES
dc.description.references Yamashita, H., Shimada, M., & Takeno, T. (1996). A numerical study on flame stability at the transition point of jet diffusion flames. Symposium (International) on Combustion, 26(1), 27-34. doi:10.1016/s0082-0784(96)80196-2 es_ES
dc.description.references DOMINGO, P., VERVISCH, L., & REVEILLON, J. (2005). DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combustion and Flame, 140(3), 172-195. doi:10.1016/j.combustflame.2004.11.006 es_ES
dc.description.references YOO, C. S., SANKARAN, R., & CHEN, J. H. (2009). Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. Journal of Fluid Mechanics, 640, 453-481. doi:10.1017/s0022112009991388 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem