Mostrar el registro sencillo del ítem
dc.contributor.author | Desantes, J.M. | es_ES |
dc.contributor.author | García-Oliver, José M | es_ES |
dc.contributor.author | Novella Rosa, Ricardo | es_ES |
dc.contributor.author | Pérez-Sánchez, E.J. | es_ES |
dc.date.accessioned | 2021-06-03T03:31:56Z | |
dc.date.available | 2021-06-03T03:31:56Z | |
dc.date.issued | 2020-03-30 | es_ES |
dc.identifier.issn | 0045-7930 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167201 | |
dc.description.abstract | [EN] Spray A from ECN, representative of diesel-like sprays, is modelled in the frame of Large-Eddy Simulations (LES) with a Dynamic Structure (DS) turbulence model in conjunction with an Unsteady Flamelet Progress Variable (UFPV) combustion model. In this work, the spray flow field is first calibrated under inert conditions against experimental data. In a second step, the reactive spray is simulated in order to describe the flame internal structure when varying ambient temperature. The model shows a good agreement with experimental results and describes the trends observed in flame global parameters, such as ignition delay (ID) and lift-offlength (LOL). Low fluctuations are observed in LOL positioning revealing an intense chemical activity at the height of the base of the flame, which stabilizes the reaction in spite of the turbulent fluctuations. The analysis of the LES instantaneous fields shows how ignition kernels appear upstream of the base of the flame, clearly detached from the reaction zone, and grow and merge with the main flame in agreement with previous reported experimental and modelling results. The ambient temperature has a clear impact on the flame structure described by the model and the whole set of results reveal that in the frame of LES simulations the UFPV model is suitable for the calculation of diesel flames. | es_ES |
dc.description.sponsorship | Authors acknowledge that this work was possible thanks to the Ayuda para la Formacion de Profesorado Universitario (FPU 14/03278) belonging to the Subprogramas de Formacion y de Movilidad del Ministerio de Educacion, Cultura y Deporte from Spain. Also this study was partially funded by the Ministerio de Economia y Competitividad from Spain in the frame of the COMEFF national project (TRA2014-59483-R). Finally, the authors thankfully acknowledge the computer resources at MareNostrum and technical support provided by Barcelona Supercomputing Center (RES-FI-2017-2-0044). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers & Fluids | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Large-Eddy simulation | es_ES |
dc.subject | Spray A | es_ES |
dc.subject | Non-premixed flames | es_ES |
dc.subject | Chemical mechanism | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.compfluid.2019.104419 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2014-59483-R/ES/MODELOS AVANZADOS DE COMBUSTION EN SPRAYS PARA PLANTAS PROPULSIVAS EFICIENTES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU14%2F03278/ES/FPU14%2F03278/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/BSC//RES-FI-2017-2-0044/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Desantes, J.; García-Oliver, JM.; Novella Rosa, R.; Pérez-Sánchez, E. (2020). Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray. Computers & Fluids. 200:1-15. https://doi.org/10.1016/j.compfluid.2019.104419 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.compfluid.2019.104419 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 200 | es_ES |
dc.relation.pasarela | S\424721 | es_ES |
dc.contributor.funder | Barcelona Supercomputing Center | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Maes, N., Meijer, M., Dam, N., Somers, B., Baya Toda, H., Bruneaux, G., … Manin, J. (2016). Characterization of Spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence. Combustion and Flame, 174, 138-151. doi:10.1016/j.combustflame.2016.09.005 | es_ES |
dc.description.references | Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837 | es_ES |
dc.description.references | Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042 | es_ES |
dc.description.references | Naud, B., Novella, R., Pastor, J. M., & Winklinger, J. F. (2015). RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combustion and Flame, 162(4), 893-906. doi:10.1016/j.combustflame.2014.09.014 | es_ES |
dc.description.references | Pei, Y., Hawkes, E. R., Kook, S., Goldin, G. M., & Lu, T. (2015). Modelling n-dodecane spray and combustion with the transported probability density function method. Combustion and Flame, 162(5), 2006-2019. doi:10.1016/j.combustflame.2014.12.019 | es_ES |
dc.description.references | Desantes, J. M., García-Oliver, J. M., Novella, R., & Pérez-Sánchez, E. J. (2017). Application of an unsteady flamelet model in a RANS framework for spray A simulation. Applied Thermal Engineering, 117, 50-64. doi:10.1016/j.applthermaleng.2017.01.101 | es_ES |
dc.description.references | Pitsch, H. (2006). LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION. Annual Review of Fluid Mechanics, 38(1), 453-482. doi:10.1146/annurev.fluid.38.050304.092133 | es_ES |
dc.description.references | Pei, Y., Som, S., Pomraning, E., Senecal, P. K., Skeen, S. A., Manin, J., & Pickett, L. M. (2015). Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions. Combustion and Flame, 162(12), 4442-4455. doi:10.1016/j.combustflame.2015.08.010 | es_ES |
dc.description.references | Nassiri Toosi, A., Farokhi, M., & Mashadi, B. (2015). Application of modified eddy dissipation concept with large eddy simulation for numerical investigation of internal combustion engines. Computers & Fluids, 109, 85-99. doi:10.1016/j.compfluid.2014.11.029 | es_ES |
dc.description.references | Buhl, S., Dietzsch, F., Buhl, C., & Hasse, C. (2017). Comparative study of turbulence models for scale-resolving simulations of internal combustion engine flows. Computers & Fluids, 156, 66-80. doi:10.1016/j.compfluid.2017.06.023 | es_ES |
dc.description.references | Kahila, H., Wehrfritz, A., Kaario, O., Ghaderi Masouleh, M., Maes, N., Somers, B., & Vuorinen, V. (2018). Large-eddy simulation on the influence of injection pressure in reacting Spray A. Combustion and Flame, 191, 142-159. doi:10.1016/j.combustflame.2018.01.004 | es_ES |
dc.description.references | Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgrid‐scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7), 1760-1765. doi:10.1063/1.857955 | es_ES |
dc.description.references | Yoshizawa, A., & Horiuti, K. (1985). A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows. Journal of the Physical Society of Japan, 54(8), 2834-2839. doi:10.1143/jpsj.54.2834 | es_ES |
dc.description.references | Ketterl, S., & Klein, M. (2018). A-priori assessment of subgrid scale models for large-eddy simulation of multiphase primary breakup. Computers & Fluids, 165, 64-77. doi:10.1016/j.compfluid.2018.01.002 | es_ES |
dc.description.references | Pomraning, E., & Rutland, C. J. (2002). Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model. AIAA Journal, 40(4), 689-701. doi:10.2514/2.1701 | es_ES |
dc.description.references | Bharadwaj, N., Rutland, C. J., & Chang, S. (2009). Large eddy simulation modelling of spray-induced turbulence effects. International Journal of Engine Research, 10(2), 97-119. doi:10.1243/14680874jer02309 | es_ES |
dc.description.references | Lucchini, T., D’Errico, G., Ettorre, D., & Ferrari, G. (2009). Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels. SAE International Journal of Fuels and Lubricants, 2(1), 966-975. doi:10.4271/2009-01-1971 | es_ES |
dc.description.references | Fooladgar, E., Chan, C. K., & Nogenmyr, K.-J. (2017). An accelerated computation of combustion with finite-rate chemistry using LES and an open source library for In-Situ-Adaptive Tabulation. Computers & Fluids, 146, 42-50. doi:10.1016/j.compfluid.2017.01.008 | es_ES |
dc.description.references | Bhattacharjee, S., & Haworth, D. C. (2013). Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame, 160(10), 2083-2102. doi:10.1016/j.combustflame.2013.05.003 | es_ES |
dc.description.references | Barths, H., Hasse, C., Bikas, G., & Peters, N. (2000). Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model. Proceedings of the Combustion Institute, 28(1), 1161-1168. doi:10.1016/s0082-0784(00)80326-4 | es_ES |
dc.description.references | D’Errico, G., Lucchini, T., Contino, F., Jangi, M., & Bai, X.-S. (2014). Comparison of well-mixed and multiple representative interactive flamelet approaches for diesel spray combustion modelling. Combustion Theory and Modelling, 18(1), 65-88. doi:10.1080/13647830.2013.860238 | es_ES |
dc.description.references | Wehrfritz, A., Kaario, O., Vuorinen, V., & Somers, B. (2016). Large Eddy Simulation of n-dodecane spray flames using Flamelet Generated Manifolds. Combustion and Flame, 167, 113-131. doi:10.1016/j.combustflame.2016.02.019 | es_ES |
dc.description.references | Pei, Y., Hawkes, E. R., Bolla, M., Kook, S., Goldin, G. M., Yang, Y., … Som, S. (2016). An analysis of the structure of an n-dodecane spray flame using TPDF modelling. Combustion and Flame, 168, 420-435. doi:10.1016/j.combustflame.2015.11.034 | es_ES |
dc.description.references | Idicheria, C. A., & Pickett, L. M. (2006). Formaldehyde Visualization Near Lift-off Location in a Diesel Jet. SAE Technical Paper Series. doi:10.4271/2006-01-3434 | es_ES |
dc.description.references | Pickett, L. M., Siebers, D. L., & Idicheria, C. A. (2005). Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets. SAE Technical Paper Series. doi:10.4271/2005-01-3843 | es_ES |
dc.description.references | Tagliante, F., Malbec, L.-M., Bruneaux, G., Pickett, L. M., & Angelberger, C. (2018). Experimental study of the stabilization mechanism of a lifted Diesel-type flame using combined optical diagnostics and laser-induced plasma ignition. Combustion and Flame, 197, 215-226. doi:10.1016/j.combustflame.2018.07.024 | es_ES |
dc.description.references | Gong, C., Jangi, M., & Bai, X.-S. (2014). Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Applied Energy, 136, 373-381. doi:10.1016/j.apenergy.2014.09.030 | es_ES |
dc.description.references | OIJEN, J. A. V., & GOEY, L. P. H. D. (2000). Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds. Combustion Science and Technology, 161(1), 113-137. doi:10.1080/00102200008935814 | es_ES |
dc.description.references | PIERCE, C. D., & MOIN, P. (2004). Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 504, 73-97. doi:10.1017/s0022112004008213 | es_ES |
dc.description.references | Ihme, M., & Pitsch, H. (2008). Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 155(1-2), 70-89. doi:10.1016/j.combustflame.2008.04.001 | es_ES |
dc.description.references | Ihme, M., & Pitsch, H. (2008). Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 155(1-2), 90-107. doi:10.1016/j.combustflame.2008.04.015 | es_ES |
dc.description.references | Tillou, J., Michel, J.-B., Angelberger, C., Bekdemir, C., & Veynante, D. (2013). Large-Eddy Simulation of Diesel Spray Combustion with Exhaust Gas Recirculation. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 69(1), 155-165. doi:10.2516/ogst/2013139 | es_ES |
dc.description.references | Peters, N. (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10(3), 319-339. doi:10.1016/0360-1285(84)90114-x | es_ES |
dc.description.references | Gicquel, O., Darabiha, N., & Thévenin, D. (2000). Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute, 28(2), 1901-1908. doi:10.1016/s0082-0784(00)80594-9 | es_ES |
dc.description.references | Maas, U., & Pope, S. B. (1992). Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame, 88(3-4), 239-264. doi:10.1016/0010-2180(92)90034-m | es_ES |
dc.description.references | Michel, J.-B., Colin, O., & Veynante, D. (2008). Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combustion and Flame, 152(1-2), 80-99. doi:10.1016/j.combustflame.2007.09.001 | es_ES |
dc.description.references | Michel, J.-B., & Colin, O. (2013). A tabulated diffusion flame model applied to diesel engine simulations. International Journal of Engine Research, 15(3), 346-369. doi:10.1177/1468087413488590 | es_ES |
dc.description.references | Tillou, J., Michel, J.-B., Angelberger, C., & Veynante, D. (2014). Assessing LES models based on tabulated chemistry for the simulation of Diesel spray combustion. Combustion and Flame, 161(2), 525-540. doi:10.1016/j.combustflame.2013.09.006 | es_ES |
dc.description.references | Dec, J. E. (1997). A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*. SAE Technical Paper Series. doi:10.4271/970873 | es_ES |
dc.description.references | García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023 | es_ES |
dc.description.references | Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309 | es_ES |
dc.description.references | CMT - Motores Térmicos. Universitat Politècnica de València, Spain, http://www.cmtupves/ECN03aspx 2019. | es_ES |
dc.description.references | Open FOAM. http://www.openfoamcom/ 2019. | es_ES |
dc.description.references | Senecal, P. K., Pomraning, E., Richards, K. J., & Som, S. (2013). An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model. SAE Technical Paper Series. doi:10.4271/2013-01-1083 | es_ES |
dc.description.references | Xue Q, Som S, Senecal P, Pomraning E. A study of grid resolution and SGS models for LES under non-reacting spray conditions 2013. 25th Annual Conference on Liquid Atomization and Spray Systems. | es_ES |
dc.description.references | Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40 | es_ES |
dc.description.references | Chemkin-PRO. http://www.reactiondesigncom/products/chemkin/ 2019. | es_ES |
dc.description.references | Payri, F., Novella, R., Pastor, J. M., & Pérez-Sánchez, E. J. (2017). Evaluation of the approximated diffusion flamelet concept using fuels with different chemical complexity. Applied Mathematical Modelling, 49, 354-374. doi:10.1016/j.apm.2017.04.024 | es_ES |
dc.description.references | Chen, Y., & Ihme, M. (2013). Large-eddy simulation of a piloted premixed jet burner. Combustion and Flame, 160(12), 2896-2910. doi:10.1016/j.combustflame.2013.07.009 | es_ES |
dc.description.references | Pera, C., Colin, O., & Jay, S. (2009). Development of a FPI Detailed Chemistry Tabulation Methodology for Internal Combustion Engines. Oil & Gas Science and Technology - Revue de l’IFP, 64(3), 243-258. doi:10.2516/ogst/2009002 | es_ES |
dc.description.references | Narayanaswamy, K., Pepiot, P., & Pitsch, H. (2014). A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combustion and Flame, 161(4), 866-884. doi:10.1016/j.combustflame.2013.10.012 | es_ES |
dc.description.references | Frassoldati, A., D’Errico, G., Lucchini, T., Stagni, A., Cuoci, A., Faravelli, T., … Ranzi, E. (2015). Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations. Combustion and Flame, 162(10), 3991-4007. doi:10.1016/j.combustflame.2015.07.039 | es_ES |
dc.description.references | Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686 | es_ES |
dc.description.references | Subramaniam, S. (2013). Lagrangian–Eulerian methods for multiphase flows. Progress in Energy and Combustion Science, 39(2-3), 215-245. doi:10.1016/j.pecs.2012.10.003 | es_ES |
dc.description.references | Duwig, C., & Fuchs, L. (2008). Large Eddy Simulation of a H2/N2Lifted Flame in a Vitiated Co-Flow. Combustion Science and Technology, 180(3), 453-480. doi:10.1080/00102200701741327 | es_ES |
dc.description.references | Tagliante, F., Poinsot, T., Pickett, L. M., Pepiot, P., Malbec, L.-M., Bruneaux, G., & Angelberger, C. (2019). A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments. Combustion and Flame, 201, 65-77. doi:10.1016/j.combustflame.2018.12.007 | es_ES |
dc.description.references | Yamashita, H., Shimada, M., & Takeno, T. (1996). A numerical study on flame stability at the transition point of jet diffusion flames. Symposium (International) on Combustion, 26(1), 27-34. doi:10.1016/s0082-0784(96)80196-2 | es_ES |
dc.description.references | DOMINGO, P., VERVISCH, L., & REVEILLON, J. (2005). DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combustion and Flame, 140(3), 172-195. doi:10.1016/j.combustflame.2004.11.006 | es_ES |
dc.description.references | YOO, C. S., SANKARAN, R., & CHEN, J. H. (2009). Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. Journal of Fluid Mechanics, 640, 453-481. doi:10.1017/s0022112009991388 | es_ES |