- -

Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray

Mostrar el registro completo del ítem

Desantes, J.; García-Oliver, JM.; Novella Rosa, R.; Pérez-Sánchez, E. (2020). Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray. Computers & Fluids. 200:1-15. https://doi.org/10.1016/j.compfluid.2019.104419

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167201

Ficheros en el ítem

Metadatos del ítem

Título: Application of a flamelet-based CFD combustion model to the LES simulation of a diesel-like reacting spray
Autor: Desantes, J.M. García-Oliver, José M Novella Rosa, Ricardo Pérez-Sánchez, E.J.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Spray A from ECN, representative of diesel-like sprays, is modelled in the frame of Large-Eddy Simulations (LES) with a Dynamic Structure (DS) turbulence model in conjunction with an Unsteady Flamelet Progress Variable ...[+]
Palabras clave: Large-Eddy simulation , Spray A , Non-premixed flames , Chemical mechanism
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Computers & Fluids. (issn: 0045-7930 )
DOI: 10.1016/j.compfluid.2019.104419
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.compfluid.2019.104419
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TRA2014-59483-R/ES/MODELOS AVANZADOS DE COMBUSTION EN SPRAYS PARA PLANTAS PROPULSIVAS EFICIENTES/
info:eu-repo/grantAgreement/MECD//FPU14%2F03278/ES/FPU14%2F03278/
info:eu-repo/grantAgreement/BSC//RES-FI-2017-2-0044/
Agradecimientos:
Authors acknowledge that this work was possible thanks to the Ayuda para la Formacion de Profesorado Universitario (FPU 14/03278) belonging to the Subprogramas de Formacion y de Movilidad del Ministerio de Educacion, Cultura ...[+]
Tipo: Artículo

References

Maes, N., Meijer, M., Dam, N., Somers, B., Baya Toda, H., Bruneaux, G., … Manin, J. (2016). Characterization of Spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence. Combustion and Flame, 174, 138-151. doi:10.1016/j.combustflame.2016.09.005

Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837

Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042 [+]
Maes, N., Meijer, M., Dam, N., Somers, B., Baya Toda, H., Bruneaux, G., … Manin, J. (2016). Characterization of Spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence. Combustion and Flame, 174, 138-151. doi:10.1016/j.combustflame.2016.09.005

Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837

Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042

Naud, B., Novella, R., Pastor, J. M., & Winklinger, J. F. (2015). RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combustion and Flame, 162(4), 893-906. doi:10.1016/j.combustflame.2014.09.014

Pei, Y., Hawkes, E. R., Kook, S., Goldin, G. M., & Lu, T. (2015). Modelling n-dodecane spray and combustion with the transported probability density function method. Combustion and Flame, 162(5), 2006-2019. doi:10.1016/j.combustflame.2014.12.019

Desantes, J. M., García-Oliver, J. M., Novella, R., & Pérez-Sánchez, E. J. (2017). Application of an unsteady flamelet model in a RANS framework for spray A simulation. Applied Thermal Engineering, 117, 50-64. doi:10.1016/j.applthermaleng.2017.01.101

Pitsch, H. (2006). LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION. Annual Review of Fluid Mechanics, 38(1), 453-482. doi:10.1146/annurev.fluid.38.050304.092133

Pei, Y., Som, S., Pomraning, E., Senecal, P. K., Skeen, S. A., Manin, J., & Pickett, L. M. (2015). Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions. Combustion and Flame, 162(12), 4442-4455. doi:10.1016/j.combustflame.2015.08.010

Nassiri Toosi, A., Farokhi, M., & Mashadi, B. (2015). Application of modified eddy dissipation concept with large eddy simulation for numerical investigation of internal combustion engines. Computers & Fluids, 109, 85-99. doi:10.1016/j.compfluid.2014.11.029

Buhl, S., Dietzsch, F., Buhl, C., & Hasse, C. (2017). Comparative study of turbulence models for scale-resolving simulations of internal combustion engine flows. Computers & Fluids, 156, 66-80. doi:10.1016/j.compfluid.2017.06.023

Kahila, H., Wehrfritz, A., Kaario, O., Ghaderi Masouleh, M., Maes, N., Somers, B., & Vuorinen, V. (2018). Large-eddy simulation on the influence of injection pressure in reacting Spray A. Combustion and Flame, 191, 142-159. doi:10.1016/j.combustflame.2018.01.004

Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgrid‐scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7), 1760-1765. doi:10.1063/1.857955

Yoshizawa, A., & Horiuti, K. (1985). A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows. Journal of the Physical Society of Japan, 54(8), 2834-2839. doi:10.1143/jpsj.54.2834

Ketterl, S., & Klein, M. (2018). A-priori assessment of subgrid scale models for large-eddy simulation of multiphase primary breakup. Computers & Fluids, 165, 64-77. doi:10.1016/j.compfluid.2018.01.002

Pomraning, E., & Rutland, C. J. (2002). Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model. AIAA Journal, 40(4), 689-701. doi:10.2514/2.1701

Bharadwaj, N., Rutland, C. J., & Chang, S. (2009). Large eddy simulation modelling of spray-induced turbulence effects. International Journal of Engine Research, 10(2), 97-119. doi:10.1243/14680874jer02309

Lucchini, T., D’Errico, G., Ettorre, D., & Ferrari, G. (2009). Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels. SAE International Journal of Fuels and Lubricants, 2(1), 966-975. doi:10.4271/2009-01-1971

Fooladgar, E., Chan, C. K., & Nogenmyr, K.-J. (2017). An accelerated computation of combustion with finite-rate chemistry using LES and an open source library for In-Situ-Adaptive Tabulation. Computers & Fluids, 146, 42-50. doi:10.1016/j.compfluid.2017.01.008

Bhattacharjee, S., & Haworth, D. C. (2013). Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame, 160(10), 2083-2102. doi:10.1016/j.combustflame.2013.05.003

Barths, H., Hasse, C., Bikas, G., & Peters, N. (2000). Simulation of combustion in direct injection diesel engines using a eulerian particle flamelet model. Proceedings of the Combustion Institute, 28(1), 1161-1168. doi:10.1016/s0082-0784(00)80326-4

D’Errico, G., Lucchini, T., Contino, F., Jangi, M., & Bai, X.-S. (2014). Comparison of well-mixed and multiple representative interactive flamelet approaches for diesel spray combustion modelling. Combustion Theory and Modelling, 18(1), 65-88. doi:10.1080/13647830.2013.860238

Wehrfritz, A., Kaario, O., Vuorinen, V., & Somers, B. (2016). Large Eddy Simulation of n-dodecane spray flames using Flamelet Generated Manifolds. Combustion and Flame, 167, 113-131. doi:10.1016/j.combustflame.2016.02.019

Pei, Y., Hawkes, E. R., Bolla, M., Kook, S., Goldin, G. M., Yang, Y., … Som, S. (2016). An analysis of the structure of an n-dodecane spray flame using TPDF modelling. Combustion and Flame, 168, 420-435. doi:10.1016/j.combustflame.2015.11.034

Idicheria, C. A., & Pickett, L. M. (2006). Formaldehyde Visualization Near Lift-off Location in a Diesel Jet. SAE Technical Paper Series. doi:10.4271/2006-01-3434

Pickett, L. M., Siebers, D. L., & Idicheria, C. A. (2005). Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets. SAE Technical Paper Series. doi:10.4271/2005-01-3843

Tagliante, F., Malbec, L.-M., Bruneaux, G., Pickett, L. M., & Angelberger, C. (2018). Experimental study of the stabilization mechanism of a lifted Diesel-type flame using combined optical diagnostics and laser-induced plasma ignition. Combustion and Flame, 197, 215-226. doi:10.1016/j.combustflame.2018.07.024

Gong, C., Jangi, M., & Bai, X.-S. (2014). Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Applied Energy, 136, 373-381. doi:10.1016/j.apenergy.2014.09.030

OIJEN, J. A. V., & GOEY, L. P. H. D. (2000). Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds. Combustion Science and Technology, 161(1), 113-137. doi:10.1080/00102200008935814

PIERCE, C. D., & MOIN, P. (2004). Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 504, 73-97. doi:10.1017/s0022112004008213

Ihme, M., & Pitsch, H. (2008). Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 155(1-2), 70-89. doi:10.1016/j.combustflame.2008.04.001

Ihme, M., & Pitsch, H. (2008). Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 155(1-2), 90-107. doi:10.1016/j.combustflame.2008.04.015

Tillou, J., Michel, J.-B., Angelberger, C., Bekdemir, C., & Veynante, D. (2013). Large-Eddy Simulation of Diesel Spray Combustion with Exhaust Gas Recirculation. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 69(1), 155-165. doi:10.2516/ogst/2013139

Peters, N. (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10(3), 319-339. doi:10.1016/0360-1285(84)90114-x

Gicquel, O., Darabiha, N., & Thévenin, D. (2000). Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute, 28(2), 1901-1908. doi:10.1016/s0082-0784(00)80594-9

Maas, U., & Pope, S. B. (1992). Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame, 88(3-4), 239-264. doi:10.1016/0010-2180(92)90034-m

Michel, J.-B., Colin, O., & Veynante, D. (2008). Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combustion and Flame, 152(1-2), 80-99. doi:10.1016/j.combustflame.2007.09.001

Michel, J.-B., & Colin, O. (2013). A tabulated diffusion flame model applied to diesel engine simulations. International Journal of Engine Research, 15(3), 346-369. doi:10.1177/1468087413488590

Tillou, J., Michel, J.-B., Angelberger, C., & Veynante, D. (2014). Assessing LES models based on tabulated chemistry for the simulation of Diesel spray combustion. Combustion and Flame, 161(2), 525-540. doi:10.1016/j.combustflame.2013.09.006

Dec, J. E. (1997). A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*. SAE Technical Paper Series. doi:10.4271/970873

García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023

Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309

CMT - Motores Térmicos. Universitat Politècnica de València, Spain, http://www.cmtupves/ECN03aspx 2019.

Open FOAM. http://www.openfoamcom/ 2019.

Senecal, P. K., Pomraning, E., Richards, K. J., & Som, S. (2013). An Investigation of Grid Convergence for Spray Simulations using an LES Turbulence Model. SAE Technical Paper Series. doi:10.4271/2013-01-1083

Xue Q, Som S, Senecal P, Pomraning E. A study of grid resolution and SGS models for LES under non-reacting spray conditions 2013. 25th Annual Conference on Liquid Atomization and Spray Systems.

Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40

Chemkin-PRO. http://www.reactiondesigncom/products/chemkin/ 2019.

Payri, F., Novella, R., Pastor, J. M., & Pérez-Sánchez, E. J. (2017). Evaluation of the approximated diffusion flamelet concept using fuels with different chemical complexity. Applied Mathematical Modelling, 49, 354-374. doi:10.1016/j.apm.2017.04.024

Chen, Y., & Ihme, M. (2013). Large-eddy simulation of a piloted premixed jet burner. Combustion and Flame, 160(12), 2896-2910. doi:10.1016/j.combustflame.2013.07.009

Pera, C., Colin, O., & Jay, S. (2009). Development of a FPI Detailed Chemistry Tabulation Methodology for Internal Combustion Engines. Oil & Gas Science and Technology - Revue de l’IFP, 64(3), 243-258. doi:10.2516/ogst/2009002

Narayanaswamy, K., Pepiot, P., & Pitsch, H. (2014). A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combustion and Flame, 161(4), 866-884. doi:10.1016/j.combustflame.2013.10.012

Frassoldati, A., D’Errico, G., Lucchini, T., Stagni, A., Cuoci, A., Faravelli, T., … Ranzi, E. (2015). Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations. Combustion and Flame, 162(10), 3991-4007. doi:10.1016/j.combustflame.2015.07.039

Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686

Subramaniam, S. (2013). Lagrangian–Eulerian methods for multiphase flows. Progress in Energy and Combustion Science, 39(2-3), 215-245. doi:10.1016/j.pecs.2012.10.003

Duwig, C., & Fuchs, L. (2008). Large Eddy Simulation of a H2/N2Lifted Flame in a Vitiated Co-Flow. Combustion Science and Technology, 180(3), 453-480. doi:10.1080/00102200701741327

Tagliante, F., Poinsot, T., Pickett, L. M., Pepiot, P., Malbec, L.-M., Bruneaux, G., & Angelberger, C. (2019). A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments. Combustion and Flame, 201, 65-77. doi:10.1016/j.combustflame.2018.12.007

Yamashita, H., Shimada, M., & Takeno, T. (1996). A numerical study on flame stability at the transition point of jet diffusion flames. Symposium (International) on Combustion, 26(1), 27-34. doi:10.1016/s0082-0784(96)80196-2

DOMINGO, P., VERVISCH, L., & REVEILLON, J. (2005). DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combustion and Flame, 140(3), 172-195. doi:10.1016/j.combustflame.2004.11.006

YOO, C. S., SANKARAN, R., & CHEN, J. H. (2009). Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. Journal of Fluid Mechanics, 640, 453-481. doi:10.1017/s0022112009991388

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem