- -

3D printing of gels based on xanthan/konjac gums

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

3D printing of gels based on xanthan/konjac gums

Mostrar el registro completo del ítem

García-Segovia, P.; García-Alcaraz, V.; Balasch Parisi, S.; Martínez-Monzó, J. (2020). 3D printing of gels based on xanthan/konjac gums. Innovative Food Science & Emerging Technologies. 64:1-9. https://doi.org/10.1016/j.ifset.2020.102343

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167207

Ficheros en el ítem

Metadatos del ítem

Título: 3D printing of gels based on xanthan/konjac gums
Autor: García-Segovia, Purificación García-Alcaraz, V. Balasch Parisi, Sebastià Martínez-Monzó, Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] 3D printing technology is a promising technology with the possibility of use for developing personalised food. To make this technology easier, and readily available for consumers, greater knowledge of the printing ...[+]
Palabras clave: 3D printing , Rheological properties , Extrusion , Konjac gum , Xanthan gum
Derechos de uso: Reserva de todos los derechos
Fuente:
Innovative Food Science & Emerging Technologies. (issn: 1466-8564 )
DOI: 10.1016/j.ifset.2020.102343
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ifset.2020.102343
Tipo: Artículo

References

Abbaszadeh, A., MacNaughtan, W., Sworn, G., & Foster, T. J. (2016). New insights into xanthan synergistic interactions with konjac glucomannan: A novel interaction mechanism proposal. Carbohydrate Polymers, 144, 168-177. doi:10.1016/j.carbpol.2016.02.026

Agoub, A. A., Smith, A. M., Giannouli, P., Richardson, R. K., & Morris, E. R. (2007). «Melt-in-the-mouth» gels from mixtures of xanthan and konjac glucomannan under acidic conditions: A rheological and calorimetric study of the mechanism of synergistic gelation. Carbohydrate Polymers, 69(4), 713-724. doi:10.1016/j.carbpol.2007.02.014

Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220, 65-75. doi:10.1016/j.jfoodeng.2017.05.015 [+]
Abbaszadeh, A., MacNaughtan, W., Sworn, G., & Foster, T. J. (2016). New insights into xanthan synergistic interactions with konjac glucomannan: A novel interaction mechanism proposal. Carbohydrate Polymers, 144, 168-177. doi:10.1016/j.carbpol.2016.02.026

Agoub, A. A., Smith, A. M., Giannouli, P., Richardson, R. K., & Morris, E. R. (2007). «Melt-in-the-mouth» gels from mixtures of xanthan and konjac glucomannan under acidic conditions: A rheological and calorimetric study of the mechanism of synergistic gelation. Carbohydrate Polymers, 69(4), 713-724. doi:10.1016/j.carbpol.2007.02.014

Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220, 65-75. doi:10.1016/j.jfoodeng.2017.05.015

Diañez, I., Gallegos, C., Brito-de la Fuente, E., Martínez, I., Valencia, C., Sánchez, M. C., … Franco, J. M. (2019). 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocolloids, 87, 321-330. doi:10.1016/j.foodhyd.2018.08.010

Fitzsimons, S. M., Tobin, J. T., & Morris, E. R. (2008). Synergistic binding of konjac glucomannan to xanthan on mixing at room temperature. Food Hydrocolloids, 22(1), 36-46. doi:10.1016/j.foodhyd.2007.01.023

Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44-54. doi:10.1016/j.jfoodeng.2016.01.025

Hamilton, C. A., Alici, G., & in het Panhuis, M. (2018). 3D printing Vegemite and Marmite: Redefining «breadboards». Journal of Food Engineering, 220, 83-88. doi:10.1016/j.jfoodeng.2017.01.008

Holland, S., Foster, T., MacNaughtan, W., & Tuck, C. (2018). Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering, 220, 12-19. doi:10.1016/j.jfoodeng.2017.06.008

Le Tohic, C., O’Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., … Kelly, A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering, 220, 56-64. doi:10.1016/j.jfoodeng.2017.02.003

Liu, Z., Bhandari, B., Prakash, S., Mantihal, S., & Zhang, M. (2019). Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids, 87, 413-424. doi:10.1016/j.foodhyd.2018.08.026

Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology, 69, 83-94. doi:10.1016/j.tifs.2017.08.018

Liu, Z., Zhang, M., Bhandari, B., & Yang, C. (2018). Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering, 220, 76-82. doi:10.1016/j.jfoodeng.2017.04.017

Mao, C.-F., Klinthong, W., Zeng, Y.-C., & Chen, C.-H. (2012). On the interaction between konjac glucomannan and xanthan in mixed gels: An analysis based on the cascade model. Carbohydrate Polymers, 89(1), 98-103. doi:10.1016/j.carbpol.2012.02.056

Severini, C., Azzollini, D., Albenzio, M., & Derossi, A. (2018). On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International, 106, 666-676. doi:10.1016/j.foodres.2018.01.034

Severini, C., & Derossi, A. (2016). Could the 3D Printing Technology be a Useful Strategy to Obtain Customized Nutrition? Journal of Clinical Gastroenterology, 50(Supplement 2), S175-S178. doi:10.1097/mcg.0000000000000705

Sun, J., Peng, Z., Zhou, W., Fuh, J. Y. H., Hong, G. S., & Chiu, A. (2015). A Review on 3D Printing for Customized Food Fabrication. Procedia Manufacturing, 1, 308-319. doi:10.1016/j.promfg.2015.09.057

Wang, L., Zhang, M., Bhandari, B., & Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering, 220, 101-108. doi:10.1016/j.jfoodeng.2017.02.029

Yang, F., Zhang, M., & Bhandari, B. (2015). Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition, 57(14), 3145-3153. doi:10.1080/10408398.2015.1094732

Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT, 87, 67-76. doi:10.1016/j.lwt.2017.08.054

Zhang, M., Vora, A., Han, W., Wojtecki, R. J., Maune, H., Le, A. B. A., … Nelson, A. (2015). Dual-Responsive Hydrogels for Direct-Write 3D Printing. Macromolecules, 48(18), 6482-6488. doi:10.1021/acs.macromol.5b01550

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem