- -

3D printing of gels based on xanthan/konjac gums

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

3D printing of gels based on xanthan/konjac gums

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Segovia, Purificación es_ES
dc.contributor.author García-Alcaraz, V. es_ES
dc.contributor.author Balasch Parisi, Sebastià es_ES
dc.contributor.author Martínez-Monzó, Javier es_ES
dc.date.accessioned 2021-06-03T03:32:11Z
dc.date.available 2021-06-03T03:32:11Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 1466-8564 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167207
dc.description.abstract [EN] 3D printing technology is a promising technology with the possibility of use for developing personalised food. To make this technology easier, and readily available for consumers, greater knowledge of the printing conditions and characteristics of food-ink is needed. This paper investigates the printability of gels based on syrup, xanthan, and konjac gums, while affecting printing variables. Those variables include the printing temperature (25¿°C and 50¿°C) and the composition of the product analysed using rheological and textural characterisation techniques. Also, the link between rheological and textural properties of gels, and printability was analysed. The higher values of G¿, G¿ and ¿* correlated to the mixtures with lower syrup concentration, and higher values of xanthan and konjac gum. Syrup, xanthan gum and konjac gum content influenced the textural properties. With the increase of syrup content, the Fmax, Fmean, Area, and slope showed reductions giving more weak gels. Rheological and textural values can define composition of formulations that give rise to valid 3D printed figures. Industrial relevance There is an increasing market need for customized food products. Three-dimensional (3D) food printing will be developed in the coming years. Undoubtedly, food printing can have many advantages, but whether the market is ready for such a big change and the technology will grow fast enough are the questions. Also it seems to be the right solution to meet the needs of today's consumers who increasingly have too little time to prepare meals on their own, especially in small or single-person households. In the future, ready, healthy meal, tailored to their individual needs, will be waiting when coming home. 3D printed gels can contribute to develop personalised food with specific nutritional characteristics. For example, this kind of gels can be used to manufacture soft foods for the elderly who have problems to swallow. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Innovative Food Science & Emerging Technologies es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 3D printing es_ES
dc.subject Rheological properties es_ES
dc.subject Extrusion es_ES
dc.subject Konjac gum es_ES
dc.subject Xanthan gum es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title 3D printing of gels based on xanthan/konjac gums es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ifset.2020.102343 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation García-Segovia, P.; García-Alcaraz, V.; Balasch Parisi, S.; Martínez-Monzó, J. (2020). 3D printing of gels based on xanthan/konjac gums. Innovative Food Science & Emerging Technologies. 64:1-9. https://doi.org/10.1016/j.ifset.2020.102343 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ifset.2020.102343 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 64 es_ES
dc.relation.pasarela S\406526 es_ES
dc.description.references Abbaszadeh, A., MacNaughtan, W., Sworn, G., & Foster, T. J. (2016). New insights into xanthan synergistic interactions with konjac glucomannan: A novel interaction mechanism proposal. Carbohydrate Polymers, 144, 168-177. doi:10.1016/j.carbpol.2016.02.026 es_ES
dc.description.references Agoub, A. A., Smith, A. M., Giannouli, P., Richardson, R. K., & Morris, E. R. (2007). «Melt-in-the-mouth» gels from mixtures of xanthan and konjac glucomannan under acidic conditions: A rheological and calorimetric study of the mechanism of synergistic gelation. Carbohydrate Polymers, 69(4), 713-724. doi:10.1016/j.carbpol.2007.02.014 es_ES
dc.description.references Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220, 65-75. doi:10.1016/j.jfoodeng.2017.05.015 es_ES
dc.description.references Diañez, I., Gallegos, C., Brito-de la Fuente, E., Martínez, I., Valencia, C., Sánchez, M. C., … Franco, J. M. (2019). 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocolloids, 87, 321-330. doi:10.1016/j.foodhyd.2018.08.010 es_ES
dc.description.references Fitzsimons, S. M., Tobin, J. T., & Morris, E. R. (2008). Synergistic binding of konjac glucomannan to xanthan on mixing at room temperature. Food Hydrocolloids, 22(1), 36-46. doi:10.1016/j.foodhyd.2007.01.023 es_ES
dc.description.references Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44-54. doi:10.1016/j.jfoodeng.2016.01.025 es_ES
dc.description.references Hamilton, C. A., Alici, G., & in het Panhuis, M. (2018). 3D printing Vegemite and Marmite: Redefining «breadboards». Journal of Food Engineering, 220, 83-88. doi:10.1016/j.jfoodeng.2017.01.008 es_ES
dc.description.references Holland, S., Foster, T., MacNaughtan, W., & Tuck, C. (2018). Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering, 220, 12-19. doi:10.1016/j.jfoodeng.2017.06.008 es_ES
dc.description.references Le Tohic, C., O’Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., … Kelly, A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering, 220, 56-64. doi:10.1016/j.jfoodeng.2017.02.003 es_ES
dc.description.references Liu, Z., Bhandari, B., Prakash, S., Mantihal, S., & Zhang, M. (2019). Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids, 87, 413-424. doi:10.1016/j.foodhyd.2018.08.026 es_ES
dc.description.references Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology, 69, 83-94. doi:10.1016/j.tifs.2017.08.018 es_ES
dc.description.references Liu, Z., Zhang, M., Bhandari, B., & Yang, C. (2018). Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering, 220, 76-82. doi:10.1016/j.jfoodeng.2017.04.017 es_ES
dc.description.references Mao, C.-F., Klinthong, W., Zeng, Y.-C., & Chen, C.-H. (2012). On the interaction between konjac glucomannan and xanthan in mixed gels: An analysis based on the cascade model. Carbohydrate Polymers, 89(1), 98-103. doi:10.1016/j.carbpol.2012.02.056 es_ES
dc.description.references Severini, C., Azzollini, D., Albenzio, M., & Derossi, A. (2018). On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International, 106, 666-676. doi:10.1016/j.foodres.2018.01.034 es_ES
dc.description.references Severini, C., & Derossi, A. (2016). Could the 3D Printing Technology be a Useful Strategy to Obtain Customized Nutrition? Journal of Clinical Gastroenterology, 50(Supplement 2), S175-S178. doi:10.1097/mcg.0000000000000705 es_ES
dc.description.references Sun, J., Peng, Z., Zhou, W., Fuh, J. Y. H., Hong, G. S., & Chiu, A. (2015). A Review on 3D Printing for Customized Food Fabrication. Procedia Manufacturing, 1, 308-319. doi:10.1016/j.promfg.2015.09.057 es_ES
dc.description.references Wang, L., Zhang, M., Bhandari, B., & Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering, 220, 101-108. doi:10.1016/j.jfoodeng.2017.02.029 es_ES
dc.description.references Yang, F., Zhang, M., & Bhandari, B. (2015). Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition, 57(14), 3145-3153. doi:10.1080/10408398.2015.1094732 es_ES
dc.description.references Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT, 87, 67-76. doi:10.1016/j.lwt.2017.08.054 es_ES
dc.description.references Zhang, M., Vora, A., Han, W., Wojtecki, R. J., Maune, H., Le, A. B. A., … Nelson, A. (2015). Dual-Responsive Hydrogels for Direct-Write 3D Printing. Macromolecules, 48(18), 6482-6488. doi:10.1021/acs.macromol.5b01550 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem