- -

Numerical approach to define a thermodynamically equivalent material for the conjugate heat transfer simulation of very thin coating layers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical approach to define a thermodynamically equivalent material for the conjugate heat transfer simulation of very thin coating layers

Mostrar el registro completo del ítem

Olmeda, P.; Margot, X.; Quintero-Igeño, P.; Escalona-Cornejo, JE. (2020). Numerical approach to define a thermodynamically equivalent material for the conjugate heat transfer simulation of very thin coating layers. International Journal of Heat and Mass Transfer. 162:1-9. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120377

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167314

Ficheros en el ítem

Metadatos del ítem

Título: Numerical approach to define a thermodynamically equivalent material for the conjugate heat transfer simulation of very thin coating layers
Autor: Olmeda, P. Margot , Xandra Quintero-Igeño, Pedro-Manuel Escalona-Cornejo, Johan Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] The 3D Conjugate Heat transfer (CHT) calculation of the heat transfer from the gas to the walls of a combustion chamber requires very fine meshing, particularly so when the walls are coated with a very thin insulation ...[+]
Palabras clave: Temperature swing , Coating material , ICE , Conjugate heat transfer , 1D heat transfer model
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Heat and Mass Transfer. (issn: 0017-9310 )
DOI: 10.1016/j.ijheatmasstransfer.2020.120377
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120377
Tipo: Artículo

References

Gori, P., Guattari, C., Evangelisti, L., & Asdrubali, F. (2016). Design criteria for improving insulation effectiveness of multilayer walls. International Journal of Heat and Mass Transfer, 103, 349-359. doi:10.1016/j.ijheatmasstransfer.2016.07.077

Kikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066

Hejwowski, T. (2010). Comparative study of thermal barrier coatings for internal combustion engine. Vacuum, 85(5), 610-616. doi:10.1016/j.vacuum.2010.08.020 [+]
Gori, P., Guattari, C., Evangelisti, L., & Asdrubali, F. (2016). Design criteria for improving insulation effectiveness of multilayer walls. International Journal of Heat and Mass Transfer, 103, 349-359. doi:10.1016/j.ijheatmasstransfer.2016.07.077

Kikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066

Hejwowski, T. (2010). Comparative study of thermal barrier coatings for internal combustion engine. Vacuum, 85(5), 610-616. doi:10.1016/j.vacuum.2010.08.020

Li, T., Caton, J. A., & Jacobs, T. J. (2016). Energy distributions in a diesel engine using low heat rejection (LHR) concepts. Energy Conversion and Management, 130, 14-24. doi:10.1016/j.enconman.2016.10.051

Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y., Koike, M., Nakakita, K., & Kawaguchi, A. (2013). Concept of «Temperature Swing Heat Insulation» in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat. SAE International Journal of Engines, 6(1), 142-149. doi:10.4271/2013-01-0274

Sivakumar, G., & Senthil Kumar, S. (2014). Investigation on effect of Yttria Stabilized Zirconia coated piston crown on performance and emission characteristics of a diesel engine. Alexandria Engineering Journal, 53(4), 787-794. doi:10.1016/j.aej.2014.08.003

D.N. Assanis, T. Mathur, The effect of thin ceramic coatings on spark-ignition engine performance, in: Earthmoving Industry Conference & Exposition 1990, SAE International, 10.4271/900903

Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661

Andruskiewicz, P., Najt, P., Durrett, R., Biesboer, S., Schaedler, T., & Payri, R. (2017). Analysis of the effects of wall temperature swing on reciprocating internal combustion engine processes. International Journal of Engine Research, 19(4), 461-473. doi:10.1177/1468087417717903

Caputo, S., Millo, F., Boccardo, G., Piano, A., Cifali, G., & Pesce, F. C. (2019). Numerical and experimental investigation of a piston thermal barrier coating for an automotive diesel engine application. Applied Thermal Engineering, 162, 114233. doi:10.1016/j.applthermaleng.2019.114233

Headley, A., Hileman, M., Robbins, A., Piekos, E., Fleig, P., Martinez, A., & Roberts, C. (2019). A thermal conductivity model for microporous insulations in gaseous environments. International Journal of Heat and Mass Transfer, 135, 1278-1285. doi:10.1016/j.ijheatmasstransfer.2019.02.073

M. Wu, Y. Pei, J. Qin, X. Li, J. Zhou, Z.S. Zhan, Q.-y. Guo, B. Liu, T.G. Hu, Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine(2017). 10.4271/2017-01-0576

Zhang, L. (2018). Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Applied Thermal Engineering, 142, 232-240. doi:10.1016/j.applthermaleng.2018.06.084

Broatch, A., Olmeda, P., Margot, X., & Escalona, J. (2019). New approach to study the heat transfer in internal combustion engines by 3D modelling. International Journal of Thermal Sciences, 138, 405-415. doi:10.1016/j.ijthermalsci.2019.01.006

Hummel, D., Beer, S., & Hornung, A. (2020). A conjugate heat transfer model for unconstrained melting of macroencapsulated phase change materials subjected to external convection. International Journal of Heat and Mass Transfer, 149, 119205. doi:10.1016/j.ijheatmasstransfer.2019.119205

Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106

Olmeda, P., Dolz, V., Arnau, F. J., & Reyes-Belmonte, M. A. (2013). Determination of heat flows inside turbochargers by means of a one dimensional lumped model. Mathematical and Computer Modelling, 57(7-8), 1847-1852. doi:10.1016/j.mcm.2011.11.078

Payri, F., Luján, J. M., Martín, J., & Abbad, A. (2010). Digital signal processing of in-cylinder pressure for combustion diagnosis of internal combustion engines. Mechanical Systems and Signal Processing, 24(6), 1767-1784. doi:10.1016/j.ymssp.2009.12.011

Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem