Mostrar el registro sencillo del ítem
dc.contributor.author | Olmeda, P. | es_ES |
dc.contributor.author | Margot , Xandra | es_ES |
dc.contributor.author | Quintero-Igeño, Pedro-Manuel | es_ES |
dc.contributor.author | Escalona-Cornejo, Johan Enrique | es_ES |
dc.date.accessioned | 2021-06-04T03:31:07Z | |
dc.date.available | 2021-06-04T03:31:07Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.issn | 0017-9310 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167314 | |
dc.description.abstract | [EN] The 3D Conjugate Heat transfer (CHT) calculation of the heat transfer from the gas to the walls of a combustion chamber requires very fine meshing, particularly so when the walls are coated with a very thin insulation layer. It is practically impossible to mesh such thin layers for numerical as well as computational cost reasons. In this paper a solution to this problem is presented: an equivalent material layer with a reasonable meshing thickness is defined in such a way that its thermal behavior matches that of the real very thin coating layer. The methodology used to define the thermodynamic properties of the equivalent coating material is based on a combination of a 1D heat transfer model and a multi-factorial sweep of material properties. This equivalent material layer can then be introduced in the 3D CHT calculation instead of the real coating thin layer, and can be adequately meshed to predict with accuracy the heat losses. The approach is illustrated for a real case and a parametric study is performed to evaluate the importance of the number of mesh nodes and the material thickness. (C) 2020 Elsevier Ltd. All rights reserved | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Heat and Mass Transfer | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Temperature swing | es_ES |
dc.subject | Coating material | es_ES |
dc.subject | ICE | es_ES |
dc.subject | Conjugate heat transfer | es_ES |
dc.subject | 1D heat transfer model | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Numerical approach to define a thermodynamically equivalent material for the conjugate heat transfer simulation of very thin coating layers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijheatmasstransfer.2020.120377 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Olmeda, P.; Margot, X.; Quintero-Igeño, P.; Escalona-Cornejo, JE. (2020). Numerical approach to define a thermodynamically equivalent material for the conjugate heat transfer simulation of very thin coating layers. International Journal of Heat and Mass Transfer. 162:1-9. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120377 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijheatmasstransfer.2020.120377 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 162 | es_ES |
dc.relation.pasarela | S\417769 | es_ES |
dc.description.references | Gori, P., Guattari, C., Evangelisti, L., & Asdrubali, F. (2016). Design criteria for improving insulation effectiveness of multilayer walls. International Journal of Heat and Mass Transfer, 103, 349-359. doi:10.1016/j.ijheatmasstransfer.2016.07.077 | es_ES |
dc.description.references | Kikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066 | es_ES |
dc.description.references | Hejwowski, T. (2010). Comparative study of thermal barrier coatings for internal combustion engine. Vacuum, 85(5), 610-616. doi:10.1016/j.vacuum.2010.08.020 | es_ES |
dc.description.references | Li, T., Caton, J. A., & Jacobs, T. J. (2016). Energy distributions in a diesel engine using low heat rejection (LHR) concepts. Energy Conversion and Management, 130, 14-24. doi:10.1016/j.enconman.2016.10.051 | es_ES |
dc.description.references | Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y., Koike, M., Nakakita, K., & Kawaguchi, A. (2013). Concept of «Temperature Swing Heat Insulation» in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat. SAE International Journal of Engines, 6(1), 142-149. doi:10.4271/2013-01-0274 | es_ES |
dc.description.references | Sivakumar, G., & Senthil Kumar, S. (2014). Investigation on effect of Yttria Stabilized Zirconia coated piston crown on performance and emission characteristics of a diesel engine. Alexandria Engineering Journal, 53(4), 787-794. doi:10.1016/j.aej.2014.08.003 | es_ES |
dc.description.references | D.N. Assanis, T. Mathur, The effect of thin ceramic coatings on spark-ignition engine performance, in: Earthmoving Industry Conference & Exposition 1990, SAE International, 10.4271/900903 | es_ES |
dc.description.references | Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661 | es_ES |
dc.description.references | Andruskiewicz, P., Najt, P., Durrett, R., Biesboer, S., Schaedler, T., & Payri, R. (2017). Analysis of the effects of wall temperature swing on reciprocating internal combustion engine processes. International Journal of Engine Research, 19(4), 461-473. doi:10.1177/1468087417717903 | es_ES |
dc.description.references | Caputo, S., Millo, F., Boccardo, G., Piano, A., Cifali, G., & Pesce, F. C. (2019). Numerical and experimental investigation of a piston thermal barrier coating for an automotive diesel engine application. Applied Thermal Engineering, 162, 114233. doi:10.1016/j.applthermaleng.2019.114233 | es_ES |
dc.description.references | Headley, A., Hileman, M., Robbins, A., Piekos, E., Fleig, P., Martinez, A., & Roberts, C. (2019). A thermal conductivity model for microporous insulations in gaseous environments. International Journal of Heat and Mass Transfer, 135, 1278-1285. doi:10.1016/j.ijheatmasstransfer.2019.02.073 | es_ES |
dc.description.references | M. Wu, Y. Pei, J. Qin, X. Li, J. Zhou, Z.S. Zhan, Q.-y. Guo, B. Liu, T.G. Hu, Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine(2017). 10.4271/2017-01-0576 | es_ES |
dc.description.references | Zhang, L. (2018). Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Applied Thermal Engineering, 142, 232-240. doi:10.1016/j.applthermaleng.2018.06.084 | es_ES |
dc.description.references | Broatch, A., Olmeda, P., Margot, X., & Escalona, J. (2019). New approach to study the heat transfer in internal combustion engines by 3D modelling. International Journal of Thermal Sciences, 138, 405-415. doi:10.1016/j.ijthermalsci.2019.01.006 | es_ES |
dc.description.references | Hummel, D., Beer, S., & Hornung, A. (2020). A conjugate heat transfer model for unconstrained melting of macroencapsulated phase change materials subjected to external convection. International Journal of Heat and Mass Transfer, 149, 119205. doi:10.1016/j.ijheatmasstransfer.2019.119205 | es_ES |
dc.description.references | Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106 | es_ES |
dc.description.references | Olmeda, P., Dolz, V., Arnau, F. J., & Reyes-Belmonte, M. A. (2013). Determination of heat flows inside turbochargers by means of a one dimensional lumped model. Mathematical and Computer Modelling, 57(7-8), 1847-1852. doi:10.1016/j.mcm.2011.11.078 | es_ES |
dc.description.references | Payri, F., Luján, J. M., Martín, J., & Abbad, A. (2010). Digital signal processing of in-cylinder pressure for combustion diagnosis of internal combustion engines. Mechanical Systems and Signal Processing, 24(6), 1767-1784. doi:10.1016/j.ymssp.2009.12.011 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 | es_ES |