- -

Numerical approach to define a thermodynamically equivalent material for the conjugate heat transfer simulation of very thin coating layers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical approach to define a thermodynamically equivalent material for the conjugate heat transfer simulation of very thin coating layers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Olmeda, P. es_ES
dc.contributor.author Margot , Xandra es_ES
dc.contributor.author Quintero-Igeño, Pedro-Manuel es_ES
dc.contributor.author Escalona-Cornejo, Johan Enrique es_ES
dc.date.accessioned 2021-06-04T03:31:07Z
dc.date.available 2021-06-04T03:31:07Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 0017-9310 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167314
dc.description.abstract [EN] The 3D Conjugate Heat transfer (CHT) calculation of the heat transfer from the gas to the walls of a combustion chamber requires very fine meshing, particularly so when the walls are coated with a very thin insulation layer. It is practically impossible to mesh such thin layers for numerical as well as computational cost reasons. In this paper a solution to this problem is presented: an equivalent material layer with a reasonable meshing thickness is defined in such a way that its thermal behavior matches that of the real very thin coating layer. The methodology used to define the thermodynamic properties of the equivalent coating material is based on a combination of a 1D heat transfer model and a multi-factorial sweep of material properties. This equivalent material layer can then be introduced in the 3D CHT calculation instead of the real coating thin layer, and can be adequately meshed to predict with accuracy the heat losses. The approach is illustrated for a real case and a parametric study is performed to evaluate the importance of the number of mesh nodes and the material thickness. (C) 2020 Elsevier Ltd. All rights reserved es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Heat and Mass Transfer es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Temperature swing es_ES
dc.subject Coating material es_ES
dc.subject ICE es_ES
dc.subject Conjugate heat transfer es_ES
dc.subject 1D heat transfer model es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Numerical approach to define a thermodynamically equivalent material for the conjugate heat transfer simulation of very thin coating layers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijheatmasstransfer.2020.120377 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Olmeda, P.; Margot, X.; Quintero-Igeño, P.; Escalona-Cornejo, JE. (2020). Numerical approach to define a thermodynamically equivalent material for the conjugate heat transfer simulation of very thin coating layers. International Journal of Heat and Mass Transfer. 162:1-9. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120377 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijheatmasstransfer.2020.120377 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 162 es_ES
dc.relation.pasarela S\417769 es_ES
dc.description.references Gori, P., Guattari, C., Evangelisti, L., & Asdrubali, F. (2016). Design criteria for improving insulation effectiveness of multilayer walls. International Journal of Heat and Mass Transfer, 103, 349-359. doi:10.1016/j.ijheatmasstransfer.2016.07.077 es_ES
dc.description.references Kikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066 es_ES
dc.description.references Hejwowski, T. (2010). Comparative study of thermal barrier coatings for internal combustion engine. Vacuum, 85(5), 610-616. doi:10.1016/j.vacuum.2010.08.020 es_ES
dc.description.references Li, T., Caton, J. A., & Jacobs, T. J. (2016). Energy distributions in a diesel engine using low heat rejection (LHR) concepts. Energy Conversion and Management, 130, 14-24. doi:10.1016/j.enconman.2016.10.051 es_ES
dc.description.references Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y., Koike, M., Nakakita, K., & Kawaguchi, A. (2013). Concept of «Temperature Swing Heat Insulation» in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat. SAE International Journal of Engines, 6(1), 142-149. doi:10.4271/2013-01-0274 es_ES
dc.description.references Sivakumar, G., & Senthil Kumar, S. (2014). Investigation on effect of Yttria Stabilized Zirconia coated piston crown on performance and emission characteristics of a diesel engine. Alexandria Engineering Journal, 53(4), 787-794. doi:10.1016/j.aej.2014.08.003 es_ES
dc.description.references D.N. Assanis, T. Mathur, The effect of thin ceramic coatings on spark-ignition engine performance, in: Earthmoving Industry Conference & Exposition 1990, SAE International, 10.4271/900903 es_ES
dc.description.references Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661 es_ES
dc.description.references Andruskiewicz, P., Najt, P., Durrett, R., Biesboer, S., Schaedler, T., & Payri, R. (2017). Analysis of the effects of wall temperature swing on reciprocating internal combustion engine processes. International Journal of Engine Research, 19(4), 461-473. doi:10.1177/1468087417717903 es_ES
dc.description.references Caputo, S., Millo, F., Boccardo, G., Piano, A., Cifali, G., & Pesce, F. C. (2019). Numerical and experimental investigation of a piston thermal barrier coating for an automotive diesel engine application. Applied Thermal Engineering, 162, 114233. doi:10.1016/j.applthermaleng.2019.114233 es_ES
dc.description.references Headley, A., Hileman, M., Robbins, A., Piekos, E., Fleig, P., Martinez, A., & Roberts, C. (2019). A thermal conductivity model for microporous insulations in gaseous environments. International Journal of Heat and Mass Transfer, 135, 1278-1285. doi:10.1016/j.ijheatmasstransfer.2019.02.073 es_ES
dc.description.references M. Wu, Y. Pei, J. Qin, X. Li, J. Zhou, Z.S. Zhan, Q.-y. Guo, B. Liu, T.G. Hu, Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine(2017). 10.4271/2017-01-0576 es_ES
dc.description.references Zhang, L. (2018). Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Applied Thermal Engineering, 142, 232-240. doi:10.1016/j.applthermaleng.2018.06.084 es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., & Escalona, J. (2019). New approach to study the heat transfer in internal combustion engines by 3D modelling. International Journal of Thermal Sciences, 138, 405-415. doi:10.1016/j.ijthermalsci.2019.01.006 es_ES
dc.description.references Hummel, D., Beer, S., & Hornung, A. (2020). A conjugate heat transfer model for unconstrained melting of macroencapsulated phase change materials subjected to external convection. International Journal of Heat and Mass Transfer, 149, 119205. doi:10.1016/j.ijheatmasstransfer.2019.119205 es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106 es_ES
dc.description.references Olmeda, P., Dolz, V., Arnau, F. J., & Reyes-Belmonte, M. A. (2013). Determination of heat flows inside turbochargers by means of a one dimensional lumped model. Mathematical and Computer Modelling, 57(7-8), 1847-1852. doi:10.1016/j.mcm.2011.11.078 es_ES
dc.description.references Payri, F., Luján, J. M., Martín, J., & Abbad, A. (2010). Digital signal processing of in-cylinder pressure for combustion diagnosis of internal combustion engines. Mechanical Systems and Signal Processing, 24(6), 1767-1784. doi:10.1016/j.ymssp.2009.12.011 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem