- -

Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano, J.R. es_ES
dc.contributor.author Arnau Martínez, Francisco José es_ES
dc.contributor.author Martín, Jaime es_ES
dc.contributor.author Auñón-García, Ángel es_ES
dc.date.accessioned 2021-06-04T03:32:08Z
dc.date.available 2021-06-04T03:32:08Z
dc.date.issued 2020-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/167321
dc.description.abstract [EN] Growing interest has arisen to adopt Variable Valve Timing (VVT) technology for automotive engines due to the need to fulfill the pollutant emission regulations. Several VVT strategies, such as the exhaust re-opening and the late exhaust closing, can be used to achieve an increment in the after-treatment upstream temperature by increasing the residual gas amount. In this study, a one-dimensional gas dynamics engine model has been used to simulate several VVT strategies and develop a control system to actuate over the valves timing in order to increase diesel oxidation catalyst efficiency and reduce the exhaust pollutant emissions. A transient operating conditions comparison, taking the Worldwide Harmonized Light-Duty Vehicles Test Cycle (WLTC) as a reference, has been done by analyzing fuel economy, HC and CO pollutant emissions levels. The results conclude that the combination of an early exhaust and a late intake valve events leads to a 20% reduction in CO emissions with a fuel penalty of 6% over the low speed stage of the WLTC, during the warm-up of the oxidation catalyst. The same set-up is able to reduce HC emissions down to 16% and NO(x)emission by 13%. es_ES
dc.description.sponsorship This research has been partially funded by the Spanish government under the grant agreement TRA2017-89894-R ("Mecoem"). Angel Aunon was supported through the "Apoyo para la investigacion y Desarrollo (PAID)" grant for doctoral studies (FPI S2 2018 1048) by Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Variable valve actuation es_ES
dc.subject Variable valve timing es_ES
dc.subject Light-duty diesel engine es_ES
dc.subject Aftertreatment thermal management es_ES
dc.subject One-dimensional model es_ES
dc.subject World harmonized light-duty vehicle test procedure es_ES
dc.subject Light-off temperature es_ES
dc.subject Diesel engine emissions es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en13174561 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89894-R/ES/METODOLOGIA PARA LA PREDICCION DE EMISIONES DE CO2 Y CONTAMINANTES DE UN MOTOR ALTERNATIVO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI S2 2018 1048/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Serrano, J.; Arnau Martínez, FJ.; Martín, J.; Auñón-García, Á. (2020). Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine. Energies. 13(17):1-26. https://doi.org/10.3390/en13174561 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en13174561 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 17 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\417771 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Arnau, F. J., Martín, J., Pla, B., & Auñón, Á. (2020). Diesel engine optimization and exhaust thermal management by means of variable valve train strategies. International Journal of Engine Research, 22(4), 1196-1213. doi:10.1177/1468087419894804 es_ES
dc.description.references Luján, J. M., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation. Energy, 80, 614-627. doi:10.1016/j.energy.2014.12.017 es_ES
dc.description.references Lancefield, T., Methley, I., Räse, U., & Kuhn, T. (2000). The Application of Variable Event Valve Timing to a Modern Diesel Engine. SAE Technical Paper Series. doi:10.4271/2000-01-1229 es_ES
dc.description.references Gonzalez D, M. A., & Di Nunno, D. (2016). Internal Exhaust Gas Recirculation for Efficiency and Emissions in a 4-Cylinder Diesel Engine. SAE Technical Paper Series. doi:10.4271/2016-01-2184 es_ES
dc.description.references Serrano, J. R., Piqueras, P., Navarro, R., Gómez, J., Michel, M., & Thomas, B. (2016). Modelling Analysis of Aftertreatment Inlet Temperature Dependence on Exhaust Valve and Ports Design Parameters. SAE Technical Paper Series. doi:10.4271/2016-01-0670 es_ES
dc.description.references Siewert, R. M. (1971). How Individual Valve Timing Events Affect Exhaust Emissions. SAE Technical Paper Series. doi:10.4271/710609 es_ES
dc.description.references Tomoda, T., Ogawa, T., Ohki, H., Kogo, T., Nakatani, K., & Hashimoto, E. (2010). Improvement of Diesel Engine Performance by Variable Valve Train System. International Journal of Engine Research, 11(5), 331-344. doi:10.1243/14680874jer586 es_ES
dc.description.references Benajes, J., Reyes, E., & Luján, J. M. (1996). Modelling Study of the Scavenging Process in a Turbocharged Diesel Engine with Modified Valve Operation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 210(4), 383-393. doi:10.1243/pime_proc_1996_210_210_02 es_ES
dc.description.references Deppenkemper, K., Özyalcin, C., Ehrly, M., Schoenen, M., Bergmann, D., & Pischinger, S. (2018). 1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications. SAE Technical Paper Series. doi:10.4271/2018-01-0163 es_ES
dc.description.references Zammit, J. P., McGhee, M. J., Shayler, P. J., Law, T., & Pegg, I. (2015). The effects of early inlet valve closing and cylinder disablement on fuel economy and emissions of a direct injection diesel engine. Energy, 79, 100-110. doi:10.1016/j.energy.2014.10.065 es_ES
dc.description.references Pan, X., Zhao, Y., Lou, D., & Fang, L. (2020). Study of the Miller Cycle on a Turbocharged DI Gasoline Engine Regarding Fuel Economy Improvement at Part Load. Energies, 13(6), 1500. doi:10.3390/en13061500 es_ES
dc.description.references Guan, W., Pedrozo, V. B., Zhao, H., Ban, Z., & Lin, T. (2019). Variable valve actuation–based combustion control strategies for efficiency improvement and emissions control in a heavy-duty diesel engine. International Journal of Engine Research, 21(4), 578-591. doi:10.1177/1468087419846031 es_ES
dc.description.references Guan, W., Zhao, H., Ban, Z., & Lin, T. (2018). Exploring alternative combustion control strategies for low-load exhaust gas temperature management of a heavy-duty diesel engine. International Journal of Engine Research, 20(4), 381-392. doi:10.1177/1468087418755586 es_ES
dc.description.references Maniatis, P., Wagner, U., & Koch, T. (2018). A model-based and experimental approach for the determination of suitable variable valve timings for cold start in partial load operation of a passenger car single-cylinder diesel engine. International Journal of Engine Research, 20(1), 141-154. doi:10.1177/1468087418817119 es_ES
dc.description.references Kim, J., & Bae, C. (2015). An investigation on the effects of late intake valve closing and exhaust gas recirculation in a single-cylinder research diesel engine in the low-load condition. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(6), 771-787. doi:10.1177/0954407015595149 es_ES
dc.description.references Zhou, X., Liu, E., Sun, D., & Su, W. (2018). Study on transient emission spikes reduction of a heavy-duty diesel engine equipped with a variable intake valve closing timing mechanism and a two-stage turbocharger. International Journal of Engine Research, 20(3), 277-291. doi:10.1177/1468087417748837 es_ES
dc.description.references Gosala, D. B., Ramesh, A. K., Allen, C. M., Joshi, M. C., Taylor, A. H., Van Voorhis, M., … Stretch, D. (2017). Diesel engine aftertreatment warm-up through early exhaust valve opening and internal exhaust gas recirculation during idle operation. International Journal of Engine Research, 19(7), 758-773. doi:10.1177/1468087417730240 es_ES
dc.description.references Parvate-Patil, G. B., Hong, H., & Gordon, B. (2004). Analysis of Variable Valve Timing Events and Their Effects on Single Cylinder Diesel Engine. SAE Technical Paper Series. doi:10.4271/2004-01-2965 es_ES
dc.description.references Piano, A., Millo, F., Di Nunno, D., & Gallone, A. (2017). Numerical Analysis on the Potential of Different Variable Valve Actuation Strategies on a Light Duty Diesel Engine for Improving Exhaust System Warm Up. SAE Technical Paper Series. doi:10.4271/2017-24-0024 es_ES
dc.description.references Payri, F., Arnau, F. J., Piqueras, P., & Ruiz, M. J. (2018). Lumped Approach for Flow-Through and Wall-Flow Monolithic Reactors Modelling for Real-Time Automotive Applications. SAE Technical Paper Series. doi:10.4271/2018-01-0954 es_ES
dc.description.references Martin, J., Arnau, F., Piqueras, P., & Auñon, A. (2018). Development of an Integrated Virtual Engine Model to Simulate New Standard Testing Cycles. SAE Technical Paper Series. doi:10.4271/2018-01-1413 es_ES
dc.description.references Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032 es_ES
dc.description.references Galindo, J., Tiseira, A., Navarro, R., Tarí, D., Tartoussi, H., & Guilain, S. (2016). Compressor Efficiency Extrapolation for 0D-1D Engine Simulations. SAE Technical Paper Series. doi:10.4271/2016-01-0554 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., & Samala, V. (2019). A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research, 21(8), 1314-1335. doi:10.1177/1468087419834194 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130 es_ES
dc.description.references Arrègle, J., López, J. J., Martín, J., & Mocholí, E. M. (2006). Development of a Mixing and Combustion Zero-Dimensional Model for Diesel Engines. SAE Technical Paper Series. doi:10.4271/2006-01-1382 es_ES
dc.description.references Payri, F., Arrègle, J., López, J. J., & Mocholí, E. (2008). Diesel NOx Modeling with a Reduction Mechanism for the Initial NOx Coming from EGR or Re-entrained Burned Gases. SAE Technical Paper Series. doi:10.4271/2008-01-1188 es_ES
dc.description.references Broatch, A., Olmeda, P., Martin, J., & Salvador-Iborra, J. (2018). Development and Validation of a Submodel for Thermal Exchanges in the Hydraulic Circuits of a Global Engine Model. SAE Technical Paper Series. doi:10.4271/2018-01-0160 es_ES
dc.description.references Guardiola, C., Pla, B., Bares, P., & Mora, J. (2018). An on-board method to estimate the light-off temperature of diesel oxidation catalysts. International Journal of Engine Research, 21(8), 1480-1492. doi:10.1177/1468087418817965 es_ES
dc.description.references Russell, A., & Epling, W. S. (2011). Diesel Oxidation Catalysts. Catalysis Reviews, 53(4), 337-423. doi:10.1080/01614940.2011.596429 es_ES
dc.description.references Guardiola, C., Pla, B., Piqueras, P., Mora, J., & Lefebvre, D. (2017). Model-based passive and active diagnostics strategies for diesel oxidation catalysts. Applied Thermal Engineering, 110, 962-971. doi:10.1016/j.applthermaleng.2016.08.207 es_ES
dc.description.references Abdelghaffar, W. A., Osman, M. M., Saeed, M. N., & Abdelfatteh, A. I. (2002). Effects of Coolant Temperature on the Performance and Emissions of a Diesel Engine. Design, Operation, and Application of Modern Internal Combustion Engines and Associated Systems. doi:10.1115/ices2002-464 es_ES
dc.description.references Torregrosa, A. J., Olmeda, P., Martín, J., & Degraeuwe, B. (2006). Experiments on the influence of inlet charge and coolant temperature on performance and emissions of a DI Diesel engine. Experimental Thermal and Fluid Science, 30(7), 633-641. doi:10.1016/j.expthermflusci.2006.01.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem