- -

Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine

Mostrar el registro completo del ítem

Serrano, J.; Arnau Martínez, FJ.; Martín, J.; Auñón-García, Á. (2020). Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine. Energies. 13(17):1-26. https://doi.org/10.3390/en13174561

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167321

Ficheros en el ítem

Metadatos del ítem

Título: Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine
Autor: Serrano, J.R. Arnau Martínez, Francisco José Martín, Jaime Auñón-García, Ángel
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Growing interest has arisen to adopt Variable Valve Timing (VVT) technology for automotive engines due to the need to fulfill the pollutant emission regulations. Several VVT strategies, such as the exhaust re-opening ...[+]
Palabras clave: Variable valve actuation , Variable valve timing , Light-duty diesel engine , Aftertreatment thermal management , One-dimensional model , World harmonized light-duty vehicle test procedure , Light-off temperature , Diesel engine emissions
Derechos de uso: Reconocimiento (by)
Fuente:
Energies. (eissn: 1996-1073 )
DOI: 10.3390/en13174561
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/en13174561
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89894-R/ES/METODOLOGIA PARA LA PREDICCION DE EMISIONES DE CO2 Y CONTAMINANTES DE UN MOTOR ALTERNATIVO/
info:eu-repo/grantAgreement/UPV//FPI S2 2018 1048/
Agradecimientos:
This research has been partially funded by the Spanish government under the grant agreement TRA2017-89894-R ("Mecoem"). Angel Aunon was supported through the "Apoyo para la investigacion y Desarrollo (PAID)" grant for ...[+]
Tipo: Artículo

References

Arnau, F. J., Martín, J., Pla, B., & Auñón, Á. (2020). Diesel engine optimization and exhaust thermal management by means of variable valve train strategies. International Journal of Engine Research, 22(4), 1196-1213. doi:10.1177/1468087419894804

Luján, J. M., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation. Energy, 80, 614-627. doi:10.1016/j.energy.2014.12.017

Lancefield, T., Methley, I., Räse, U., & Kuhn, T. (2000). The Application of Variable Event Valve Timing to a Modern Diesel Engine. SAE Technical Paper Series. doi:10.4271/2000-01-1229 [+]
Arnau, F. J., Martín, J., Pla, B., & Auñón, Á. (2020). Diesel engine optimization and exhaust thermal management by means of variable valve train strategies. International Journal of Engine Research, 22(4), 1196-1213. doi:10.1177/1468087419894804

Luján, J. M., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation. Energy, 80, 614-627. doi:10.1016/j.energy.2014.12.017

Lancefield, T., Methley, I., Räse, U., & Kuhn, T. (2000). The Application of Variable Event Valve Timing to a Modern Diesel Engine. SAE Technical Paper Series. doi:10.4271/2000-01-1229

Gonzalez D, M. A., & Di Nunno, D. (2016). Internal Exhaust Gas Recirculation for Efficiency and Emissions in a 4-Cylinder Diesel Engine. SAE Technical Paper Series. doi:10.4271/2016-01-2184

Serrano, J. R., Piqueras, P., Navarro, R., Gómez, J., Michel, M., & Thomas, B. (2016). Modelling Analysis of Aftertreatment Inlet Temperature Dependence on Exhaust Valve and Ports Design Parameters. SAE Technical Paper Series. doi:10.4271/2016-01-0670

Siewert, R. M. (1971). How Individual Valve Timing Events Affect Exhaust Emissions. SAE Technical Paper Series. doi:10.4271/710609

Tomoda, T., Ogawa, T., Ohki, H., Kogo, T., Nakatani, K., & Hashimoto, E. (2010). Improvement of Diesel Engine Performance by Variable Valve Train System. International Journal of Engine Research, 11(5), 331-344. doi:10.1243/14680874jer586

Benajes, J., Reyes, E., & Luján, J. M. (1996). Modelling Study of the Scavenging Process in a Turbocharged Diesel Engine with Modified Valve Operation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 210(4), 383-393. doi:10.1243/pime_proc_1996_210_210_02

Deppenkemper, K., Özyalcin, C., Ehrly, M., Schoenen, M., Bergmann, D., & Pischinger, S. (2018). 1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications. SAE Technical Paper Series. doi:10.4271/2018-01-0163

Zammit, J. P., McGhee, M. J., Shayler, P. J., Law, T., & Pegg, I. (2015). The effects of early inlet valve closing and cylinder disablement on fuel economy and emissions of a direct injection diesel engine. Energy, 79, 100-110. doi:10.1016/j.energy.2014.10.065

Pan, X., Zhao, Y., Lou, D., & Fang, L. (2020). Study of the Miller Cycle on a Turbocharged DI Gasoline Engine Regarding Fuel Economy Improvement at Part Load. Energies, 13(6), 1500. doi:10.3390/en13061500

Guan, W., Pedrozo, V. B., Zhao, H., Ban, Z., & Lin, T. (2019). Variable valve actuation–based combustion control strategies for efficiency improvement and emissions control in a heavy-duty diesel engine. International Journal of Engine Research, 21(4), 578-591. doi:10.1177/1468087419846031

Guan, W., Zhao, H., Ban, Z., & Lin, T. (2018). Exploring alternative combustion control strategies for low-load exhaust gas temperature management of a heavy-duty diesel engine. International Journal of Engine Research, 20(4), 381-392. doi:10.1177/1468087418755586

Maniatis, P., Wagner, U., & Koch, T. (2018). A model-based and experimental approach for the determination of suitable variable valve timings for cold start in partial load operation of a passenger car single-cylinder diesel engine. International Journal of Engine Research, 20(1), 141-154. doi:10.1177/1468087418817119

Kim, J., & Bae, C. (2015). An investigation on the effects of late intake valve closing and exhaust gas recirculation in a single-cylinder research diesel engine in the low-load condition. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(6), 771-787. doi:10.1177/0954407015595149

Zhou, X., Liu, E., Sun, D., & Su, W. (2018). Study on transient emission spikes reduction of a heavy-duty diesel engine equipped with a variable intake valve closing timing mechanism and a two-stage turbocharger. International Journal of Engine Research, 20(3), 277-291. doi:10.1177/1468087417748837

Gosala, D. B., Ramesh, A. K., Allen, C. M., Joshi, M. C., Taylor, A. H., Van Voorhis, M., … Stretch, D. (2017). Diesel engine aftertreatment warm-up through early exhaust valve opening and internal exhaust gas recirculation during idle operation. International Journal of Engine Research, 19(7), 758-773. doi:10.1177/1468087417730240

Parvate-Patil, G. B., Hong, H., & Gordon, B. (2004). Analysis of Variable Valve Timing Events and Their Effects on Single Cylinder Diesel Engine. SAE Technical Paper Series. doi:10.4271/2004-01-2965

Piano, A., Millo, F., Di Nunno, D., & Gallone, A. (2017). Numerical Analysis on the Potential of Different Variable Valve Actuation Strategies on a Light Duty Diesel Engine for Improving Exhaust System Warm Up. SAE Technical Paper Series. doi:10.4271/2017-24-0024

Payri, F., Arnau, F. J., Piqueras, P., & Ruiz, M. J. (2018). Lumped Approach for Flow-Through and Wall-Flow Monolithic Reactors Modelling for Real-Time Automotive Applications. SAE Technical Paper Series. doi:10.4271/2018-01-0954

Martin, J., Arnau, F., Piqueras, P., & Auñon, A. (2018). Development of an Integrated Virtual Engine Model to Simulate New Standard Testing Cycles. SAE Technical Paper Series. doi:10.4271/2018-01-1413

Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032

Galindo, J., Tiseira, A., Navarro, R., Tarí, D., Tartoussi, H., & Guilain, S. (2016). Compressor Efficiency Extrapolation for 0D-1D Engine Simulations. SAE Technical Paper Series. doi:10.4271/2016-01-0554

Serrano, J. R., Olmeda, P., Arnau, F. J., & Samala, V. (2019). A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research, 21(8), 1314-1335. doi:10.1177/1468087419834194

Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261

Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130

Arrègle, J., López, J. J., Martín, J., & Mocholí, E. M. (2006). Development of a Mixing and Combustion Zero-Dimensional Model for Diesel Engines. SAE Technical Paper Series. doi:10.4271/2006-01-1382

Payri, F., Arrègle, J., López, J. J., & Mocholí, E. (2008). Diesel NOx Modeling with a Reduction Mechanism for the Initial NOx Coming from EGR or Re-entrained Burned Gases. SAE Technical Paper Series. doi:10.4271/2008-01-1188

Broatch, A., Olmeda, P., Martin, J., & Salvador-Iborra, J. (2018). Development and Validation of a Submodel for Thermal Exchanges in the Hydraulic Circuits of a Global Engine Model. SAE Technical Paper Series. doi:10.4271/2018-01-0160

Guardiola, C., Pla, B., Bares, P., & Mora, J. (2018). An on-board method to estimate the light-off temperature of diesel oxidation catalysts. International Journal of Engine Research, 21(8), 1480-1492. doi:10.1177/1468087418817965

Russell, A., & Epling, W. S. (2011). Diesel Oxidation Catalysts. Catalysis Reviews, 53(4), 337-423. doi:10.1080/01614940.2011.596429

Guardiola, C., Pla, B., Piqueras, P., Mora, J., & Lefebvre, D. (2017). Model-based passive and active diagnostics strategies for diesel oxidation catalysts. Applied Thermal Engineering, 110, 962-971. doi:10.1016/j.applthermaleng.2016.08.207

Abdelghaffar, W. A., Osman, M. M., Saeed, M. N., & Abdelfatteh, A. I. (2002). Effects of Coolant Temperature on the Performance and Emissions of a Diesel Engine. Design, Operation, and Application of Modern Internal Combustion Engines and Associated Systems. doi:10.1115/ices2002-464

Torregrosa, A. J., Olmeda, P., Martín, J., & Degraeuwe, B. (2006). Experiments on the influence of inlet charge and coolant temperature on performance and emissions of a DI Diesel engine. Experimental Thermal and Fluid Science, 30(7), 633-641. doi:10.1016/j.expthermflusci.2006.01.002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem