- -

Tuneable Emission of Polyhedral Oligomeric Silsesquioxane Based Nanostructures that Self-Assemble in the Presence of Europium(III) Ions: Reversible trans-to-cis Isomerization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tuneable Emission of Polyhedral Oligomeric Silsesquioxane Based Nanostructures that Self-Assemble in the Presence of Europium(III) Ions: Reversible trans-to-cis Isomerization

Mostrar el registro completo del ítem

Cinà, V.; Carbonell, E.; Fusaro, L.; García Gómez, H.; Gruttadauria, M.; Giacalone, F.; Aprile, C. (2020). Tuneable Emission of Polyhedral Oligomeric Silsesquioxane Based Nanostructures that Self-Assemble in the Presence of Europium(III) Ions: Reversible trans-to-cis Isomerization. ChemPlusChem. 85(3):391-398. https://doi.org/10.1002/cplu.201900575

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/167322

Ficheros en el ítem

Metadatos del ítem

Título: Tuneable Emission of Polyhedral Oligomeric Silsesquioxane Based Nanostructures that Self-Assemble in the Presence of Europium(III) Ions: Reversible trans-to-cis Isomerization
Autor: Cinà, Valerio Carbonell, Esther Fusaro, Luca García Gómez, Hermenegildo Gruttadauria, Michelangelo Giacalone, Francesco Aprile, Carmela
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Hybrid nanostructures with switchable and reversible "blue-red-green" emission were efficiently synthesized. These nanostructures comprise polyhedral oligomeric silsesquioxanes (POSS) that behave as a nanocage that ...[+]
Palabras clave: Europium , Isomerization , Luminescence , Self-assembly , Silsesquioxanes
Derechos de uso: Cerrado
Fuente:
ChemPlusChem. (issn: 2192-6506 )
DOI: 10.1002/cplu.201900575
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/cplu.201900575
Agradecimientos:
The authors acknowledge the University of Palermo and the University of Namur. V.C. gratefully acknowledges the University of Palermo and University of Namur for a co-funded PhD fellowship.
Tipo: Artículo

References

Duchateau, R., van Meerendonk, W. J., Huijser, S., Staal, B. B. P., van Schilt, M. A., Gerritsen, G., … Keurentjes, J. T. F. (2007). Silica-Grafted Diethylzinc and a Silsesquioxane-Based Zinc Alkyl Complex as Catalysts for the Alternating Oxirane−Carbon Dioxide Copolymerization. Organometallics, 26(17), 4204-4211. doi:10.1021/om700367x

Kunthom, R., Jaroentomeechai, T., & Ervithayasuporn, V. (2017). Polyhedral oligomeric silsesquioxane (POSS) containing sulfonic acid groups as a metal-free catalyst to prepare polycaprolactone. Polymer, 108, 173-178. doi:10.1016/j.polymer.2016.11.038

Wada, K., Nakashita, M., & Mitsudo, T. (1998). Active catalysts prepared using a vanadium-containing oligosilsesquioxane for selective photo-assisted oxidation of methane into methanal. Chemical Communications, (1), 133-134. doi:10.1039/a707173f [+]
Duchateau, R., van Meerendonk, W. J., Huijser, S., Staal, B. B. P., van Schilt, M. A., Gerritsen, G., … Keurentjes, J. T. F. (2007). Silica-Grafted Diethylzinc and a Silsesquioxane-Based Zinc Alkyl Complex as Catalysts for the Alternating Oxirane−Carbon Dioxide Copolymerization. Organometallics, 26(17), 4204-4211. doi:10.1021/om700367x

Kunthom, R., Jaroentomeechai, T., & Ervithayasuporn, V. (2017). Polyhedral oligomeric silsesquioxane (POSS) containing sulfonic acid groups as a metal-free catalyst to prepare polycaprolactone. Polymer, 108, 173-178. doi:10.1016/j.polymer.2016.11.038

Wada, K., Nakashita, M., & Mitsudo, T. (1998). Active catalysts prepared using a vanadium-containing oligosilsesquioxane for selective photo-assisted oxidation of methane into methanal. Chemical Communications, (1), 133-134. doi:10.1039/a707173f

Kannan, R. Y., Salacinski, H. J., Ghanavi, J., Narula, A., Odlyha, M., Peirovi, H., … Seifalian, A. M. (2007). Silsesquioxane Nanocomposites as Tissue Implants. Plastic and Reconstructive Surgery, 119(6), 1653-1662. doi:10.1097/01.prs.0000246404.53831.4c

Rizvi, S. B., Yang, S. Y., Green, M., Keshtgar, M., & Seifalian, A. M. (2015). Novel POSS–PCU Nanocomposite Material as a Biocompatible Coating for Quantum Dots. Bioconjugate Chemistry, 26(12), 2384-2396. doi:10.1021/acs.bioconjchem.5b00462

Zhang, C., Babonneau, F., Bonhomme, C., Laine, R. M., Soles, C. L., Hristov, H. A., & Yee, A. F. (1998). Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization. Journal of the American Chemical Society, 120(33), 8380-8391. doi:10.1021/ja9808853

Bivona, L. A., Fichera, O., Fusaro, L., Giacalone, F., Buaki-Sogo, M., Gruttadauria, M., & Aprile, C. (2015). A polyhedral oligomeric silsesquioxane-based catalyst for the efficient synthesis of cyclic carbonates. Catalysis Science & Technology, 5(11), 5000-5007. doi:10.1039/c5cy00830a

Calabrese, C., Liotta, L. F., Giacalone, F., Gruttadauria, M., & Aprile, C. (2018). Supported Polyhedral Oligomeric Silsesquioxane‐Based (POSS) Materials as Highly Active Organocatalysts for the Conversion of CO 2. ChemCatChem, 11(1), 560-567. doi:10.1002/cctc.201801351

Bivona, L. A., Giacalone, F., Carbonell, E., Gruttadauria, M., & Aprile, C. (2016). Proximity Effect using a Nanocage Structure: Polyhedral Oligomeric Silsesquioxane-Imidazolium Tetrachloro- palladate Salt as a Precatalyst for the Suzuki-Miyaura Reaction in Water. ChemCatChem, 8(9), 1685-1691. doi:10.1002/cctc.201600155

Hartmann-Thompson, C., Keeley, D. L., Pollock, K. M., Dvornic, P. R., Keinath, S. E., Dantus, M., … LeCaptain, D. J. (2008). One- and Two-Photon Fluorescent Polyhedral Oligosilsesquioxane (POSS) Nanosensor Arrays for the Remote Detection of Analytes in Clouds, in Solution, and on Surfaces. Chemistry of Materials, 20(8), 2829-2838. doi:10.1021/cm703641s

Carbonell, E., Bivona, L. A., Fusaro, L., & Aprile, C. (2017). Silsesquioxane–Terpyridine Nano Building Blocks for the Design of Three-Dimensional Polymeric Networks. Inorganic Chemistry, 56(11), 6393-6403. doi:10.1021/acs.inorgchem.7b00471

Escribano, P., Julián-López, B., Planelles-Aragó, J., Cordoncillo, E., Viana, B., & Sanchez, C. (2008). Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials. J. Mater. Chem., 18(1), 23-40. doi:10.1039/b710800a

LI, L., FENG, S., & LIU, H. (2015). Novel hybrid luminescent materials derived from multicarboxy cage silsesquioxanes and terbium ion. Journal of the Ceramic Society of Japan, 123(1441), 719-724. doi:10.2109/jcersj2.123.719

Li, L., Feng, S., & Liu, H. (2014). Hybrid lanthanide complexes based on a novel β-diketone functionalized polyhedral oligomeric silsesquioxane (POSS) and their nanocomposites with PMMA via in situ polymerization. RSC Adv., 4(74), 39132-39139. doi:10.1039/c4ra05577b

Bekiari, V., & Lianos, P. (2003). Multicolor emission from terpyridine–lanthanide ion complexes encapsulated in nanocomposite silica/poly(ethylene glycol) sol–gel matrices. Journal of Luminescence, 101(1-2), 135-140. doi:10.1016/s0022-2313(02)00405-2

Chung, J. W., Yoon, S.-J., An, B.-K., & Park, S. Y. (2013). High-Contrast On/Off Fluorescence Switching via Reversible E–Z Isomerization of Diphenylstilbene Containing the α-Cyanostilbenic Moiety. The Journal of Physical Chemistry C, 117(21), 11285-11291. doi:10.1021/jp401440s

Dugave, C., & Demange, L. (2003). Cis−Trans Isomerization of Organic Molecules and Biomolecules:  Implications and Applications. Chemical Reviews, 103(7), 2475-2532. doi:10.1021/cr0104375

Lin, L.-R., Tang, H.-H., Wang, Y.-G., Wang, X., Fang, X.-M., & Ma, L.-H. (2017). Functionalized Lanthanide(III) Complexes Constructed from Azobenzene Derivative and β-Diketone Ligands: Luminescent, Magnetic, and Reversible Trans-to-Cis Photoisomerization Properties. Inorganic Chemistry, 56(7), 3889-3900. doi:10.1021/acs.inorgchem.6b02819

Bian, M., Wang, Y., Guo, X., Lv, F., Chen, Z., Duan, L., … Xiao, L. (2018). Positional isomerism effect of spirobifluorene and terpyridine moieties of «(A)n–D–(A)n» type electron transport materials for long-lived and highly efficient TADF-PhOLEDs. Journal of Materials Chemistry C, 6(38), 10276-10283. doi:10.1039/c8tc03796e

Andres, J., & Chauvin, A.-S. (2010). Europium Complexes of Tris(dipicolinato) Derivatives Coupled to Methylumbelliferone: A Double Sensitization. European Journal of Inorganic Chemistry, 2010(18), 2700-2713. doi:10.1002/ejic.201000126

Divya, V., Freire, R. O., & Reddy, M. L. P. (2011). Tuning of the excitation wavelength from UV to visible region in Eu3+-β-diketonate complexes: Comparison of theoretical and experimental photophysical properties. Dalton Transactions, 40(13), 3257. doi:10.1039/c0dt01652g

Zhang, Z.-M., Han, F.-F., Zhang, R., Li, N., & Ni, Z.-H. (2016). Design, syntheses and aggregation-induced emission properties of two new enlarged tetraarylethene-based luminogens. Tetrahedron Letters, 57(17), 1917-1920. doi:10.1016/j.tetlet.2016.03.071

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem